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Foreword eiaadi aiiv~v

Antenna and wavezuidt technology plays a large role in con-
temporary radi.o Engineerrgadi -aidi dvel opighadinh

7 ith ',It. Specialists axe intarested i*n the systematic acquisition
c f information or. trhe eveloprenc of one or another o f the many
trends in antenna 1,c-nolc.-7, in results of recent theo rattiLal and
.zxperimental studies in the area of antennas, and in ad~acent sci-
entific an~d technologiocal fields, as well as in the discussions
surrounding questions of interest tc thera. In addition, inasmuch.
as at the present articles on the questions to be indicated here
are published in various io-urnals, their ccncentratcn in one print
medium is also to be desired.

'-he Antanna Section of the ScetfcTcnlgclSociety
:cr Radio Zngineer~rni and Electronic Cimmunications inm. A. S. Popova.
togetlier with the "Svvaz' Publishers, h;as begun tco issue a series
of regular publications if works of the Section in the form of col-
lEctions of articles under the title, "Antennas." T7he present JI lection is the first isszue. The editorial board hones that the
regular publication of articles and works of the Section, articles
reflecting the present level in antenna technology and fields native
to that Subject, will "be useful for a liae rorti .n fradio snecial-
ists.

Success in initiating an Antenna Section and in a publishing
venture would be unthinkable without the active creativre participa-
tion of members of the Society in this endeavor. This participation
may be expressed, not only in the publication of articles, but also
in reviews of articles submitted for publication. In connection with
this, the editorial board would like to express its gratitude to
G. A. Fvstropov, V. D. Kuznetsov, and A. K. Stolyarov, who took part,
together with members of the editorial board, in reviewing the art-
cles submitted for publication in the first collection.

The editorial board will be grateful to readers for their criti-
cal commentaries and suggestions concerning the nature of these col-
lections and the materials published in them.

Reader commentaries, as well as materials for subsequent collec-
tions should be directed to the editors of 'Svyaz' Publishers of the
"Antennas" collections (Moscow Central, Chistoprudnyy Boulevard, 2).

Editorial Board
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?ROELEMS IN THE DZSlG A:D METHODS FOR CALCULATING THE P.ARAMIETERS
OF UERY LO'.4' FREQ",ENCY A D LOW FRQ'UENCY ANTENNAS

B. V. Braude, E. G. Aleksandrova

Examined here are problems in the rational design of base-station antennas
of the capacitor (volumetric) kind. It is demonstrated that the basic electri-
cal features of these kinds of systems are determined only by the volume occupied
by the antenna system and do not depend on its configuration; the criterion for
the selection of the configuration may be the system cost. Here, a method for
calculating the basic parameters (capacitance, operational height, and loss re-
sistance) in the antenna grounding system.

Introduction

The necessity for creating communication systems with enhanced reliability

and effective range has once again attracted the attention of specialists to the

range of lcw frequency and very low frequency waves; these waves possess not only

the capability of being propagated at great distances with relatively small at-

tenuation, but also assure stable functioning under conditions of ionospheric

disturbance.

:n creating a radio station using the low frequency (L) and very low fre-

quency (VILF) ranges, 1 the predominating problem is the choice of a radiating sys-

tem that must have the required electrical parameters, reliability, and lowest

possible cost.

It has been impossible up to now to predicate the antenna dimensions for an-

tennas working in this wave range, although as a rule, as with the antenna dimen-

sions of antennas in other wave ranges, the dimensions are roughly dependent on

wave length. It is known only, however, that these antenna dimensions are small

in comparison to wave length.

Despite the fact that the electrodynamic model of this kind of system is

quite simple, the creation of LF and VLF antenna systems is connected with great

difficulties, first of all, because of the enormous margins of reactive power in

We are concerned here with frequency ranges of 150-50 kHz (the conventional long

waves) and 50-10 kHz (conventional very long waves).
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them, and secondl, *eause of the necessity for modern systems to function

across ,id2 frecuency ranges.

it should be remarked that up to the present time the only criterion for /5

evaluating the effectiveness of antennas of the type indicated here has not been

made use of: problems in rational design have beer, approached by means of a

method of 6ampling, but the choice of optimal system dimensions has been depend-

ent on the designer's experience.

General Design Principles

In designing LF and VLF antennas, it is necessary to take into account that

it is the operational conditions in the long wave portion of the frequency range,

where the antenna and its elements for tuning form a simple oscillatory circuit,

that will be the most troublesome.

The effectiveness of fixed or base-station antennas, which may be called

volumetric type antennas, is characterized by their Q-factors, by which is undel-

stood the ratio of reactive power reserve in the antenna to its emissive or radi-

ating power. For antennas whose dimensions are small in comparison with wave

length, radiation resistance can be computed acccrdir to Ruccnberg's formula,

and the computation of reactance is based on taking the antenna to be in the shape

of a flat capacitor, without taking into account edge effect influences. This

latter does not lead to any appreciable error, because the allowable error is

compensated for by a drop in capacitance, caused by the wire structure of the

curtain array.

The antenna Q-factor is calculated as the ratio of its reactance to its radi-

ation resistance, written in the form:

where X is wave length; v=Sh, the volume occupied by the antenna; S is the sur-

face area occupied by the antenna; h is the height of the antenna curtain array

suspension, which may be taken equal to the antenna operational height.

The antenna efficiency coefficient is determined by the following expression,

first introduced by A. A. Pistol'kors (1]:

2



where Q is the Q-factor of the adjustment elements taking into account antenna

-osses.

The antenna circuit Q-factor and the antenna bandwidth are expressed as:

2F= I

Here, f is the carrier frequency.

-h'en a power P is fed to an antenna circuit, it is easy to derive the fol-

:.Gwing ress for the voltage on the antenna:

Equations (i)-(4) make it possible tc establish the following important con-

clusions: (1) The antenna circuit efficiency coefficient and its bandwidth at

given wavelengths and adjustment element Q-factors are determined only by the

volume occupied by the antenna system, and does not depend on the configuration

of this volume. In other words, an antenna may take up a small surface area, but

it must be suspended on high masts, and if the antenna is suspended on low masts,

it must take up a large surface area. (2) The antenna voltage at given wave-

lengths and volumes is determined by the radiation power, and it increases in the

height of the masts used for suspending the antenna curtain.

It is expedient and necessary to use the cost of an antenna as a criterion

for finding its optimal volumetric configuration; the cost is basically determined

by the weight of the metallic parts used for supporting the antenna curtain. The

weight of metal parts, in its turn, is proportional to the load on the masts and

the number of masts.

Let the load on the masts be determined by wind pressure on the antenna cur-

tain array. Then, the load on one mast is expressed thusly:
T ! . L ' ,(5)

p

'Formulas (1) and (4) are also derived in [19].
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.r s 2 "h span leugth, i is "ne conduc:or sag, an' d is the iameter of t-e

conductors in the antenna array.

Assuming that the span length and the conductor sag are proportional to the
S .S

mast height H, and the number of masts in the system is N-T-, we derive the fol-

owin :ressio.n :or :he tctal t.-ight G of the metal work:
d S (6t)L4
H

This expression was first derived by Yu. A. Savitskiv.

As the conductor diameters of the antenna curtain array are proportional to

tne vol-ace as :et=rmine, _ equation (4), we have:
C=K :l 7)

-. H

where K is the coefficient of proporticnality. To find the coefficient of pro-

2ocrtionality, it is sufficient to calculate any concrete antenna system. !

From equation (7), which determines in the final analysis the cost of the

antenna, it follows that the antenna cost is proportional to the square of the

wavelength and the square root of the radiational power. Further, it follows from

this equation that antenna cost is reduced with an increase in mast height. It

;s necessary to remember, however, that together with an increase in mast height,

the surface area occupied by the antenna, as well as the number of antennas, must

be decreased. An increase in mast height is connected at the same time with a

proportional increase in antenna voltage.

In this way, it is advisable to use higher masts in designing LF and VLF

antennas, if the mast height is not restricted by any kinds of special conditions.

The antenna volume required for assuring determined features and characteris-

tics can be realized in various ways. This may be by means of a system made from

one or several gamma-shaped, T-shaped, or umbrella antennas working in parallel,

whose feed is realized according to the simple parallel circuit suggested by I. G.

Freyman [2], or according to the circuit of Aleksandersen. [3-5]. The slot radiator

According to a communication from G. Z. Ayzenberg, for some types of antennas,
the value of H in formula (7) should be more correctly substituted by Hn (n<l).
The value of n depends on the concrete type of antenna system being used.

4
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scnemes with extended horizontal portions, suggested by G. Z. Ayzenberg and

studied by B. S. Nadenenko [6], can also be used.

In iUsing slots that are disconnected or open on the ends, these kinds of

vibrations are of considerable interest also for the wave ranges under considera-

tion here. A similar system was used in creating the "valley" antenna [7], ac-

cording to which the horizontal curtain is suspended between mountain ridges.!

The layouts for the antenna types indicated above are shown in Figs. 1-4.

,,v ell .
4-/4

i i.Antenna system with horizoncal Fig. 2. Antenna system with horizontal

portion in the shape of a convex poly- portion in the shape of a six-pointed

3Cn. star.
KeT: (a) view along AB

The choice of the number of individual constituent elements making up the

antenna system volume necessary for assuring the required electrical characteris-

tics iz determined basically by .he range of waves over which the antenna must

function, as well as by its slewability and reliability. Normally, the number

of system elements is chosen in such a way that their natural resonance frequency

is equal to, or almost equal to, the highest range frequency. In this case, the

necessity for using expensive capacitors for adjusting the antenna disappears,

and antenna adjusting is carried out only by means of inductors. The existence

of several elements also lowers the ground losses and enhances station slewability

as a whole.

IThe efficiency coefficient for this kind of antenna turned out to be low due
to the negligible conductivity of the mountain rock in the area where the an-
tenna was set up. As slight conductivity in rock is characteristic for almost
all mountain regions, the effectiveness of "valley" antennas is low as a rule.
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- .3,Antenna systea uith horizontal i.4."ally 1 antenna.

portion in the shape of a rectangular
screen.

An imporzant place in designing antennas is occupied by the prjblon of

selecting maximum voltage values. Fcr conductors with diameters on the order

of 25 mm, the maximum allowable voltage at which corona losses do not exceed

allowable values, is about 200 effective kC. This voltage is also used in modern

large-scale VLF radio stations. It is characteristic that the transition to

higher voltages Coes not lower the cost of antenna equipment, because conduators

with larger diameters must be used in this, and as a consequence, the metal con-

struction weight increases Esee formula (6)]. in addition, with an increase in

voltage, the insulation problem for the antenna curtain becomes more complex, es-

pecially with regard to the antenna feed, and for this reason using voltages

higher than 200 effective kV is not possible at present.

The most complex problem in creating LF, and especially VLF, antennas is de-

riving high values for the coefficient of efficiency. As may be seen from the

ratios cited above, this value depends as a rule on the selection of antenna

volume, which determines its Q-factcr, QA' and the Q-factors of the adjustment

elements, taking into account ground losses Q Keeping in mind that the margins

of reactive power in extended inductors and in the antenna system are identical,

it is possible to choose a surface area for an antenna and the grounding equipment

taking the condition of the equality of losses in the ground and in the extensicn

6



induZtors as a startin- point. For this, it is necessary to cdecrease by two

:i4-es the '- f -or for the djustment elements cited above and to be enterad in

ex:pressio~n ,,in comparison with the natural inductor §-value. it is natural

tha: in each concrete case arcund losses and losses - the extension inductors

can occur in other relationships and according to other racios. However, the de-

mands :zade on the adjustment elements and the grounding systems should be regulated

by means of a predetermined method.

It shculd be noted that the use of Litz wire with a large cross section makes

it possicle to derive at the present time a natural 0-factor for the extension in-

ductors of about 1,500. Taking the cited Q-factor of an inductor to be equal to

750, from formulas (1) and (2) it is easy to conclude that for the creation, for

example, of an antenna with an efficiency coefficient on the order of 50% for a

vqa,e of 30 km, its volume must be approximately equal to 1.35 km'. For this, the

overall extent of the conductors in the grounding system, depending cn the con-

ductivic7 of the soil, may amount to 1,000 to 3,000 km.

The Method for Calculating Basic Parameters

The Calculation of Static Capacitance and the Natural Resonance Wave

The most widely used method in calculating the capacitance of antenna systems

is the method derived by How; however, for greatly extended wire curtains, it

turns out to be very cumbersome. The considerable success achieved recently in

the area of the theory of wire curtains (mostly, thanks to the work of M. 1.

Kontorovich [8, 91), makes it possible to substantially simplify the methods for

calculating antenna capacitances.

The individual elements of an antenna made from a series of conductors are

substituted by thin, solid metallic surfaces, whose dimensions and shapes corres-

pond to the wire portions of the antenna. If the distance between conductors in

the net is smaller than twice the height of their suspension over the ground, then

it is possible to demonstrate that the differences in potentials of the wire net

and the solid metallic surface with the same dimensions can be determined basically

by the difference between the potentials of one conductor and a solid plate whose

width is equal to the distance between the conductors in the system. The

7
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a-itance f te wire curtain relative to the grnun".. is E:pressd I t.e ful-

bowzn~ ,anne'--

C~ 2 r

wi-ere C is the capacitance of the solid metallic surface having the shape of a

wire curtain, and 1, d, and r are respectively the ovcrall length of all conductors1i th:e curtain, the di_:tance between the conductors, and the radius of the cross

sectional area cf the ccnductors expressed in centimeters.

-he capacitance of the solid metallic surface with a surface area S=7R2[cm21,

disposed parallel to the ground surface at a height of h (cm], is determined ac-

cording to the following formula:

-o -: ;I -- r - .' Y,

-_.is last f;rmula may be used both for curtains in the shape of a disk, as

well as fcr curtains in the shape of convex polygons. With a cur:ain rectangular

fo-rm, i- is necessary that the dimensions of its sides differ from each other by

not more than three to four times. Fcr the six-pointed star in Fig. 2, the radius

of the described circle, equal to R0 , should be taken as R=0.825"R 0 in formula

(9) . "

The expressions cited above make it possible to easily calculate the capaci-

tance of the horizontal portion of an antenna. The antenna downlead capacitance

for the antennas being considered here is, as a rule, quite negligible in compari-

son with the capacitance of the horizontal portion. However, its value is neces-

sary for calculating the antenna feed impedance. It is possible to show chat the

influence of the charges of a greatly extended horizontal antenna portion reduces

the downlead capacitance by twofold in comparison with the value calculated taking

into account the influence of the horizontal portion. In this way, the antenna

downlead capacitance for umbrella antennas is:

'The height of the antenna curtain is determined in the following manner:

- for umbrella antennas:
22 .4 -

for rectangular curtains:

Here, , and L2 are the conductor sags for the curtains (see Figs. 1-3). Tie
formulas have been derived with the presumption that the antenna wires are
twisted according to a parabolic principle.

8

"- .. .. . .. -.. ., 7 . . .... . . . '-.. . -i . -77 . ;L AW."' - . . .w i. . . i . ..--ll .... W . .



where h is the dcwnlead length, cm, and r is the cross sectional area radius

of a cvlicdrical downlead. If a downlead is made of n conductors with a radius
nl r-

of r, disposed in a circle with radius R, then r0=R k nr
R$_F_.r slct antennas, the downlead capacitance is determined by the expression:

4 1 4
*: t:.' 2. r

The natural wavelength of the antenna in a first approximation is written in

the form:

w.,;here C, is the capacitance of the antenna's horizontal portion. This formula is

derived with the assumption that the antenna inductance is determined by its down-

lead. it is necessary to use long-line theory for the precise determination of

an antenna's natural wavelength and its reactive capacitance.

Calculation of the Operational Antenna Height Taking into Account the
Horizontal Curtain Suspension and the Counterphase Excitation of the
Supporting Metal Mass

In determining the operational height for LF and VLF antennas, it is necessary

to take into account the distribution of capacitance throughout the whole system

between its horizontal and vertical parts, as well as the influence of the wire

suspension of the horizontal parts and the currents excited in the supporting

structures of the antennas.

If we assume that the shape of the conductors forming the antenna is para-

bolic, and the wire suspension sag is significantly less than its total length,

then for T-shaped and slot antennas the operational height is determined by the

expression:

It A C, ' I ' " ' 3

t1 9



an.. .,! '. .n sas n in wc mutually

per->e.ioular rce C .=C C , 1 -e aienna available capacitance.

For an umbrella antenna with an upper oart in the form of a cone with a large

A". I j14)

where '1 is the central mast height, H2 is the height of periphery -asts (normally

HI), '.I is the vertical suspension sag of the radial wires, and i' is the

vertical suspenion sag of the perirhery wire ropes between the peripheral masts.

in practical applications of antenna equipment, it is a variant of the sys-

tem's construction, according to which the masts and the guy-wires supporting them,

are 'rounded. The mast with .uy-wires in this case forms a nonhomogeneous line,

whose driving capacitance decreases according to an increase in the distance from

the ground to the cross section under consideration. The dependency of the driv-

ing capacitance C ! on the mast height may be approximated by an equation of the

C, = C -(

where C1 2 is the driving capacitance of the mast with Suy-wires in its foundation,

i is the mast height, and x is the distance from the mast foundation to the cross

sectional area under consideration. The degree indicator n cannot be precisely

calculated; hcwever, for masts with three surfaces of guy-wires, disposed at a

45' angle to the mast column, the value of n, as calculations have shown, can be

taken equal to 2. For grounded masts with insulated guy-wires, n should be taken

equal to 0.

Taking a grounded mast as a receiving antenna, around which an electrical field

with voltage E is distributed, 2 and using the reciprocity principle, it is possible

to demonstrate that the distribution of charge excited by the antenna field in a

!This formula and the subsequent ones were derived under the assumption that the
heights of the grounding supports are small in comparison with the wavelength.
The r_,ral wavelength of the grounded masts with their guy-wires is about 3.5.H.
For this reason, the cited formulas may be used if the workinz wavelenath is
areater than 7..
'For antennas with a greatly extended horizontal portion, it is possible to take
E as a constant magnitude.

10
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wa .,h -t.- 7 is the wave number, and (" is the available

canzan.... ia t e mast wit.i guy-wires, which can be determined by means of inte-

grating (15).

As model measurements have shoun, the available capacitance of mast with4 guy-wires depends basically on the dimensions of the guy-wires. For masts with

three to five tiers of guy-wires disposed in three layers at an angle of 450 to

the mast cclumn, the capacitance C. may be found according to the following semi-

empirical formula:

where r is the radius of the guy-wire cross section. All dimensions are ex-

pressed in centimeters.

The operational mast height, with respect to the current in its foundation,

is determined by integrating expression (16), and amounting to:

n l-a

In this way, all necessary data for calculating the operational 'antenna

height taking into account the currents excited by the antenna in the grounded

masts are determined.

14ith a voltage U cn the antenna, the current in its foundation is:

i-.C !, .. 41

If the operational antenna height is equal to h. without taking into account

the influence of the mast, the resulting operational height h-' can be found from

lFor grounded masts with insulated guy-wires,
H

'I

rp

where r is the equivalent radius of the mazt column cross section.

where 11



Substitutin,- tie valut of I fr4cn formula (19) , frcm formula (16) , and

Ifrom formula (13") -ni t .z, w~e -Et:

It_ shcu~d 0.e --oel tho:a u.-e masts in an antenna system also increase
tn.2 system's ca~aci:anceo, ziis ma': be found from the fcllowing expression:

CA

where C iL :a anntenna caac-_tanze takinz 4nto account zthe influenze of groundec

77azts.

Ifof the overall no-mber of grounded masts N, Nmasts are peripheral masts,

and N.2 masts are disposed on. the interior of the antenia curtain, then for the

peripheral masts 1IE.%O.56 U, and for the intern.al masts FE 1 O.73 U. These rela-

tionships are derived with the assuntion that the pe ri-'he.ral -masts are disposeid

at a distance on the order of O.1bM from the anten~na curtain, and :Ihat the capaci-

tance of the wire antenna curtain is about 0.75 of the capacitance of the same kind

of curtain, but one made from a solid metal surface.

On the basis of what has been outlined above, -,,e have:

I l~fl _ .- 1L.75A.

For the antenna systems illustrated inl Figs. 1 to 3, h 0.75-1i; h .O.9

h-0.675-H; C't A1 0 3 CA For this situation, the distance between mists is taken

to be equal to twice he height, and the suspension sag of the wires in the an-

tenna curtain is about 0.15-H; the downlead capacitance is about 57, of the capaci-

tance of the horizontal portion.

12



As the distance between the conductor wires in the kinds of an.tennas under

consideration here are, as a rule, many times greater than the conductor wire

diameters, the average voltage gradient along the conductor wires of the horizontal

portion of the antenna can be expressed as:

CC"

where . 4S the overall longth of all conductor wires in the horizontal portion.

The average voltage gradient on the conductor wires in the vertical portion

of the antenna can also be determined according to formula (24), if the index r

4is substituted by, h and equations (10) or (Ii) are used.

In addition to the dieiectric strength of the basic mass .: f co-nducting wires

determined 'y equation (24), it is necessar 7 to calculate the dielectric strength

of the peripheral conductor wires of the antenna and those parts of it which are

disposed near the ground or near the metal grounded supports. Thus, the well- /!

kncwn expression following may be used for the voltage gradient of peripheral con-

ductor wires in the horizontal portion:

p-i ,r!n -

If a peripheral conducting wire is located near the grounded mast, the gradi-

ent can be calculated in the following manner 11:

EU
ff.1

where R is the distance from the conducting wire to the mast, and rcP is the aver-

age radius of the mast cross section.

In assessing the dielectric strength of the periphery conducting wires, it is

necessary to take the greatest of the values derived.

For a dcwnlead composed of n conducting wires disposed around a grounded mast,

the voltage gradient should be determined according to the following formula:

13
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where R is the distance from the downlead conducting wires to the mast axis.

:t is possible to use formula (27) also when n=l; in this case, it is suit-

able for calculating the gradient on the downlead conducting wires of slot antennas

that are disposed near grounded mas-s.

The voltage gradient on conducting wires of a distributer feeder for slot

antennas is expressed thusly:

rr -.. e area,-

where 2 is 'he area of ~-h circle over whicih n feeder conduzcina wires are dis-

In evaluating an. antenna's dielecric strength, it must be taken into con-

sideration that the breakdown voltage gracient fOr air is, Under normal atmospheric

conditions, about 21.2 ' The voltage gradient at which corona losses begin
cm f. kV

in moist air is about 10 For this reason, in antenna designing, a

working voltage is chosen in such a way that the maximum voltage gradient cn the

conducting wires will be less than the value indicated above.

Antenna insulations must be fitted with electrostatic protection aczessories

for the creation of uniform field distribution across the porcelain insulators. The

voltage gradient on the construction elements in the accessories may be calculated

according to the formulas cited in T13]. The gradient across the porcelain shculd
of. kV kV a :

not exceed .7i -I
c 1. cm

Calculating the Resistance to Grounding Losses

The theory of groundings for LF antennas across the period of the first four

decades in the development of radio engineering was the least developed area in

radiation theory. The methods used and applied for calculating groundings did not

reflect any galvanic physical substance to radiation processes and the distributi)n

14



of: electronagnetic energy, an-i the'yiaele only the most approximate and prelimi-

nary data on losses in the ground.

A substantial shift in grounding theory took place in 1935 with the method

of Brown [l0], which he developed for calculating currents in a ground excited by

an antenna field. The Brown theory made it possible to determine the direction

and magnitude of currents flowing in the ground, and in this way, it yielded a

basis for a more rational construction of grounding systems. The detailed data

of Brown, Louis, and Epstein [1u] that appeared subsequently in 1937 concerning

the distribution of currents in a ground with the presence of a grounding consti-

tuted from radially distributed conducting wires, occasioned a considerable simpli-

fication and facili:ation in investigations concerning this problem. However,

Brown's assumptions and allowances did not make it possible to determine the ab-

solute magnitude of losses.

The basic idea underlining his theory corsists in the following. it is as-
cf sumed that a ground is an ideal conductor, and from the equation i- H, where H

is determined according to the theory of the distribution of electromagnetic waves

for a vertical radiator, the surface current density in the ground may be found.

It is further assumed that with a finite, but ground of sufficiently high

conductivity, the earth current will remain practically the same (subsequently,

this was experimentally confirmed for relatively srall distances from an antenna).

In this way, knowing the conductivity of the ground and the current magni-

tude, it is possible to calculate losses in each volume element of ground surface.

However, when these losses are integrated across the whole ground surface taking

into account the finite depth of current penetration into the earth, It turns out

that the expression for losses goes to infinity.

This result is completely explicable if it be taken into account that the

overall current induced in an ideally conducting ground, at an infinite distance

from the antenna, goes to a finite magnitude. Gn the strength of these reasons,

Brown, Louis, and Epstein were forced, in their comparisons of various grounding

systems, to limit the summing of losses to the limits of the grcunding systems

considered.
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-.ev-hac earlid±r, 4n 19,~.-..t'cE Cf dividing, an

%2tcr,:agnetic- ficzld of antennas int2; ccomonent- n-uctfcns and radiations;

tis -eno ade it t .o-ibl toavoiJ the comolications cited above and to find

an absolute value- for the losse s. The components c 'f the field current in the

ground exzed by the induction 'Field and the radiation field, as with the field

componenzs tale-zsel-.es, are shift-ed through a phase of 90'. On the strength of

this, ground losses-. caused by thiese currents can be algebraically summed. The

component radiation current, Equal to zero in the antenna foundation, increases

with the distance and approaches a zonstant limit at infinity. T'he component

induction curre;nt, equal in the found ation to the an~tenna field current, drops

off with distance -.-.d .2es to zero at infinity.

Ground 7 5 fr.m- tne first current component determine the nature of the

at.:enruaciLo -f lectromagnetic waves in their dissemination and are dependent

ras c a~v parameters. Tegrning arrangement has -no su-bstantial

int.lu-nce c~r zheza ':sses, as it ocuples a comparatively small &rea near the

antenna wi:1.i tiial values for the radiition current component.

The second field component is connected directly with the antenna current

and determined by the Biot-Savart Law. k7,round losses caused by this ccmponent

are usually called "grounding losses."t The metallization of teground near an

antenna sharply reduces these losses. :ntegrating them. across the whole surface

from the foundation of the antenna to infinity, taking into account only the second

field component, i-t is possible to derive an expression fcr calculating resistance

to ground losses.

In 1944, M4. 1. Kontorovich and NK. S. Beschastnov suggested a method for cal-

culating ground losses (12] based on the calculation of antenna capaci tance by

means of the mirror reflection of the antenna and its counterpoise in the ground,

and possessing arbitrary parameters. - in 19146, S. I. Nadenenko [11] suggested

summiing the ground losses from the field current in the hialf-wave radius, for Cal-

culating ground resistance, beginning with the assumption that the induction fields

beyond :he limits of this zone are no longer great.

!With the existence of finite soil conductivity, the antenna capacitance turns
out to be complex, and for this its imaginary component makes it possible to ca.'-
culate the antenna resistance caused by ground losses.

16
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-n the same :er, on the basis of the liansen and Beckeriey theory 113],

a precise method for calculating the antenna impedance was developed, with a

orecision up to a given current distribution in the antenna and a given grounding

114]. In particular, it was demonstrated that if the antenna dimensions and the

grounding dimensions are small in comparison with the wavelength in the soil, the

results of a precise calculational method will agree with the results of M. I.

Kontorovich's and N. S. Beschastnov's approximative method. At the sane time,

the resistance to ground losses turns out to be not dependent on frequency (for

the case when the displacement currents in the soil are small in comparison with

the conduction currents).

If, hcwever, the antenna dimensions and the grounding dimensions are large

in comparison with the wavelength in the soil (which does not exclude the pos-

sibili:v of their being small in comparison with the wavelength in the air), then

the resistance to ground losses is proportional tc the vf (where f is frequency),

that is, the nature of this phenomenon is conditioned by the skin-effect phenomenon,

all of which vindicates the Brown method of calculaticn. In addition to this, as

it emerges from the precise method of calculation, ground losses which lower the

antenna efficiency coefficient are caused only by its induction fields. This is

the basis of X. S. Newman's idea explained above.

In 1954 and 1958, Wait and Pope suggested a method for determining the an-

tenna feed impedance, taking into account the finite conductivity of the ground;

the method was based on using the Lorenz lemma. The essence of this method con-

sists in the following. The antenna feed impedance, taking into account the fin-

ite ccnductivity of the ground, is taken as the sum of antenna feed impedance as-

suming ideal ground conductivity and of a small accessory impedance taking into

account its finite conductivity. This latter is expressed as the ratio of induced

emf as a result of the finite conductivity to the current in the antenna founda-

tion. In agreement with the Lorenz lemma, the induced emf is determined as the

integral of the current distribution function for an ideally conducting ground,

integrated across the whole ground surface (with the ideally conductive ground

normalized for a current in the antenna base), and multiplied by the tangential

value of the electrical field at the ground surface arising with its finite

conductivity. The tangential field value at the ground surface is found by means

of multiplying the current in the ground (assuming that its conductivity is ideal)

17



A

1-. tha surface ioodance of the actual -round surface. Bey.ond :he limits of tha

groud ing, this latter may be determined only by means of soil paramezers accord-

ing to skin-effect formulas, and within the grounding limits, as the parallel

joining of the actual ground impedance and the metallic wire mesh.

It is necessary tc note that the accessory and antenna impedance, calculated

according to the Wait mnthod, turns out to be finite as a result of the finite

ground conductivity, and this makes this method quite convenient for practical

applications.

In a series of works concerned with the design of grounding systems, only

the loss components depending on frequency have been taken into account. At the

same time, calculations have demonstrated that losses in the grounfing zone with

a large number of conducting wires increase, as a rule, with increases in soil con-

ductivitv and decrease with decreases in soil conductivity. From this, it has

been concluded that it is advisable to set up antennas in a place where soil con-

ductivity in the grounding zone is small, and beyond the limits of this zone, where it

is great [51. However, the use of the expressions for ground surface impedance

is justified only in the case when the antenna and grounding dimensions are great

in comparison to the wavelength in the soil. In calculations for antennas working

in a range of *ery low frequencies, however, where the distances between the

grounding conducting wires are, as a rule, less than the wavelengths in the soil,

it is necessary tc take into account, in addition, the supplementary resistance

to ground losses, which does not depend on frequency and has the character of re-

sistance in the grounding electrode wires for a direct current grounding electrode

'12, 14, 173. Because this resistance is inversely proportional to soil conduc-

tivity, an antenna site with high soil conductivity both in the grounding zone as

well as beyond its limits must be selected.

In those cases, when for any of a number of reasons, soil conductivity in

the grounding zone is small, it is necessary to select a number of grounding con-

ducting wires, such that the specific gravity of the supplementary ground losses,

caused by the grounding wire structure, is sufficiently small, and such that the

influence of conductivity variations in the upper soil level under varying mete-

orological conditions would have no influence on antenna parameters.
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.. a.is of what has been explaine, above, it is ossble to derive

the follow-ing reacivaly simple expressions fcr calculating the resistance to

r . I.ies in LF antennas th great':. developed horizontal parts:

.wnere:

For the case when b-1,the -formula is simplified, and the following form is

arri-;od-A at:

-- " - : - - -

r

w'rere:

-- ntenna onerational height, m;

grounding radius, m;

n th number of conductors in the radial grounding;

r3 radius of grounding conductor cross sectional area, mn;/

a -soil conductance, S/;

-- wavelength, m;

b -- ratio of reactive impedance of the wire grid to active impedance

of the ground surface.

Because the depth of current penetration into the ground, in accordance

with skin-effect theory, is several tens of meters for VLF waves, in calculating

the first member in expressions (29) and (30), the value of a may be taken to be

independent of meteorological factors. The second component of the losses does

not depend on frequency and is determined by the value of a at depths equal ap-

proximately to the distance between the grounding conductors. For this reason,

it is advisable, when this is being computed, to take the smallest value of a

for a given locale for frozen soil or dry weather.

Calculating the Antenna Efficiency Coefficient

As Hansen and Beckerley demonstrated [131, the radiation resistance of an

i9



anzonna 1ccazed semiconducting svil is al-..ays !liss thon the- radiaticn resist-

arcE u: .n afl.L -,~n located :ni ia ideally conduLcting, un~cundel flat surface.

7;ji- fs cetermin-d the f. , a E: 7-E sS o n

fR_ is the antennia rac:.ation resistance tenncaccor-ling :o the Ruilenberg for-
mula; 3=60C,%, the i:airvcomponen: of the soil diaeectric Dermittivity ccns-.at,
which is assumec' to be -much g-reater than tna material component.

ThE antenna effcec coef'ficient, from the point of view of the field

-)a~ f th'e qround -wav- create-2 b.- it is:

Wnere Rfs thne anztenna rcn oss resistance in i-s ad~ustment elements as ,well.

:.virh a grounding system that has been we'l constructed, the value of n. can

be larger than unity; this has been observed several times in measurements cone

on actual antenna equipme-nt. This kind of result is not absurd, insofar as the

value of ! in this determninati4on is the coefficient of antenna gain.

Special Features in Calculations for Multi-Element Antennas

f ancen ''tmo cnoe fsvrl for instance, p elcments, th~en

in calculations for the whole system it is necessary to begin withl the overall

surface area of the horizontal curtains and to use expression (9). The capac---

rance of one element is a simple division of available capacitance by: p. In this

way', the reciprocal and mutual influences between the antenna system elements

will be accounted for in computing the reactive component of its feed impedlance.

The radiation resistance of each element is computed according to the Rudenberg

formula with the addition of all impedances from the other elements to be inserted.

The inserted impedance from one element for the case when. the distance between

elements is d. 0.23X, is determined according to the follcwing simple formula:

Pi.3



. ,.e r _datCn reaae of one element conmuted r.ccording to

e ov _l surface area of the oroundi.z system -s equal to S, then

a num'er D radial -o -- . --eltetr ees n, each of which consists -_f n con-

ducting wires, the loss resistance with respect to the overall current in all

the do4nleads in the antenna system is calculated according to the followin- for-
mu as:

1-, 1 -.. : - _ - -

{L

-__ a- ' -g I - [: -1 . 3
.3

i t ! ~-'r . -- where <.

Eere, 't s accepted that: ' - ,: . .

In conclusion, it should be stressed tlhat the grounded masts -.,ith guy-wi4res

must also have radial groundings w¢ith a relative-ly small number of conducting

wirsand- "-

wires, .. an hy 7aust be connected witzh the overall antenna ground~ing system.

Losses in r-hese .-roundi-ngs can be calculated accordiLng to the samne formulas, 4if

Sis taken equal to 1 in expressi-on (19), -:1tecurnti he mas ona
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Liti.arti:.~ nE.. 'inds of cransmxission l4ies for :-mil lretrl4C and sub-
i' I .n e t ri c waves are eone -- quas -optical reflecting beamr waveguide lines

are' re 1leC tin 4 ea wanuie1io wt lenses.

ofea aaeud comms siw:e-avwae i

:n the range of decimetzic aiceteti waves, the mo.t universally used
wa'cui~ 2r~e us,: r ~;ezes pa:.reczangular wa-.eguides :iha wave of

Z~t t i exracr inr i -fiultto akea sinale-wave, rectangular

po:ssible to apply, broad! (i:, C_-777ariSOl Wit'h A' , thalt 's, muIlti-WaVe -,aV IUdes

.ia r. i a ct urd with orea care, in order zt.a the unavoidable transfor-_aticn po-

:esses c' t;i-e principal w.,ave inlto higher crcer waves will be suffiziently small in

the; r it Is oosbeto create quasi-optical reflectirg beam lines or reflecting

~ea-m lines lmlvigenses, cconsitina., :f a series of equidistant lenses or

zur-.:ed :nirrra o_'at conduct tli wev.. bumilea. The delmncof These kinds of

'4nes began abou)-t five or six years ago I,, see also the Overview In [37).

in describ.Jii nil limetric wave -)ropagation in raflacting bea nrror or lens

lines, it --' converient tn usE the not ion of an elementarv bundle . "'enetar~-

bundle" is thE name for a prcpa_ ating elect romagnetic wave occupying a region of

space with an approximately cylindrical shape. The field of the bundle has -a

finite value at r<r s, where r is the cylindrical coordinate, and r S is the b-undle

parameter, falling away exponentially at r>r ~ah bnl scaatrzd

a parameter r sand two pole numbers indicating the dependenlcy of the field vo rage .

on the azimuth ar.21e '3 and on the radius r. More precisel-y Stated, the field

v.cltage on the middle plane is:

and the surfacE zf aquivalrxnt phases is flat:. Here, L- is a so-called *La2uerre
q

polynom,i
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:ora ~mor u.Ie, - ar-er thE index c otf the Lrn~OY

nom la greater w-" I e f t.L -*e '.unule ~itthat i-, the value of

the ratio r at which the effectiv.e e:x.onerntia iel craeiaraa.

:he fi -ld distributioDn along the burdle axis (along the z axis) is determined

cthe Maxwell1 equations. According to the distance from the plane, zconst., for

~icLexo~ssin (1 nlies, the parameter r increases (that is, the bundle ex-

parnds) and ait thle same tin.e, thie surface of equivalent phases becomes curved.

At the same time, it takes on the form of a spherical section, whose center of

car';ature lies to the left of the central plane (Fig. 1). To the left of this

plane, the surface of equivalent phases has the form of a concave sphere. All

of -rig. 1 is sym'metrical withn respect to the central plane. The field amplitude

ar=" is shorxn by: the broken line.

N"

~Central
dplan

thelef ofthecenra plane, n ie~st h ih -t ihrsett

the field which is nonhomogeneous across a cross section. It is possible

to imagine it as an aggregate of flat waves propagated in different directions,

with these directions forming a small cone around the z-axis. A variation in the

field structure of the bundle with the propagation of the bundle along the axis

represents a typically diffractional effect, that is, an effect connected with
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.,~~~~~~~-~- ~n s r '~vlh sis diffractir. zt:nosnercs

Cr for.'r fr :', 'Oundle f-rcnt :~le in arny arbjitrar-v cross s~ctI, the size

of t-he o ur.dle remains finiteL, that is, the 1bundle is not contracted to a point.

_5size mciesion r. is p r.,po r t i oal to c-~ whic, is typical for a series

o iffrac-tion o'cenomena, fir instance, fcr the passage of a 'aethrough the
focs 7f n ptials~stem. The analogy becween this phenomenon and the nature

of the bundle field near the central plane is quite far- reach ing.

Bundles cannotz exist: by taEmnsa ves: daDendinz on. the distance from the Central

cae, they become more and icmre dillated. in order to t-ransfc,)-r a div1ergine burndle

into a ccnverging one, lenses, m4rrors, or systems af mTrrors are used, ane a

series of these represents a quasi-optical linre. If the surface 3f equivalent

phases before it reaches alerns or mirror is convex, after tIhe 7-asSage of the

bu-ndl 1e through th-e lens or after it is reflected from a mirror, it becomes con-

cavie, and the amplitud4e field distributicn in the plane ?reita to thle direc-

t on cf b-undle propagation d~oes not change. Thebud>i pro-a-zatet! further byf means of the raethod describced here.

Phase correction by successive lenses and mirrors completely re-Enerates the

b undle. It beccmes identical to the bundle as it passF-d thro!uh the precec:Ing

phase correcticn. :n this way, the s:/stem of phase corrections guid-3Es th'e 'oundle

and reiterates it as it passes through each correction phase.

?h .ase correction is a geometric ccncept. if the bundle field, as i-t ap-

prahes the correction phase, is characterized by a magnitude u11x, :,then the

field of the exiting bundle is characterized by a magnitude U (x, y~e 'Y)

The fun~ction (:,y) is determined by the phase shift of a ray between the point

with coordinates (x, y) as it enters the correction and the paint with the same

coordinates as it exits from it. This kind cf calculation for phase correction

has the same order of precision as geometrico-optical calculatic'ns in paraxial

approximations. In thlis calculation, it is sufficient to account for the trans-

formation in phase distribution; in geometric problems, a knowledge of the phase

would be sufficient for determining the directicn of the rays (as normnal to the

surfaces of equivalen: phases), and it would not be necessary to account for wave

refraction at the boundaries in an explicit form.
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.nf bundles -with principally diffract ionol natures is u sed in

quasi-optics to describo -.ave propagation in a free space. 1n :his way, in order

to represent thne essence o processes in quasi-optical lines, it is necessary

to cake up oth geometrico-optical (phase correction), as we!- as diffractional

(wave bundle) concepts.

The processes of propagating electromagnetic waves in quasi-optical lines

may be viewed from another side as well. We shall describe a bundle in general

as tne natural wave of a system of identical, equidistant phase correctcrs. The

field distribution of a natural wave across a cross sectional area is repeated

with a precision to within a constant (complex) factor after it passes through

the interval between lenses and passes through a lens. The constant factor deter-

mines the phase shift of the natural wave and its amplitude decrease. Field dis-

crihution after each lens is reiterated with a precision to within the phase

shift, not dependent on the coordinates in the plane of the cross section. The

elemenzar:- buncles described above are natural waves in a line composed of an

infinite number of quadratic correctors, that is, correctors whose phase shift o

is proportional to the square of the radius ri. The module of the complex factor

in this case is equal to unity. Bundles with different indices (q, .) are propa-

gated in a quasi-optical line with an infinite number of correctors independent

of each other. The energy flux in any wave entering into the line is equal to

Zhe sum of energy fluxes of the natural waves. The variable r- in expression (I)

is proportional to the square root of the product of the distance L between cor-

rectors and the wavelength \.

Natural waves (repeating bundles) also exist in systems with finite numbers /1

of correctors, that is, with correctors in absorption screens (Fig. 2). If the

correctors are quadratic, the fields of the natural waves are similar to elementary

bundles, with the exception however, that their energies decrease with propaga-

tion. This is connected with the fact that a portion of the energy exiting from

a given lens does not in general reach a subsequent lens; this leads to the occur-

rence of radiational (they are sometimes called "diffractional") losses. For main-

taining repeating bundles in these kinds of systems, in addition to phase correc-

tors that adjust phase distribution according to the bundle cross section within

the aperture limits, an important role is also played by absorption screens. These

latter remo%. that portion of a bundle which does not correspond to the field as
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-. . aa e Insseteo af en sin a lsorptue screens.

nyex ss flrgm a precedina torrectieln phase.

For illustration's sake, field amplitude distributions in a quasi-opicai

-i-e composed of restricted quadratic correctors are shown in Fig. 2. The vari-

auble c t f , caracterizir the radiational ans nthe line, has been gaken
equal to -"T. 111-.Is variable is a magnitude proprtionlal to the squarea of zhe

iratio of the lens radius a to the effective radius rs of the b-undl-e incidernt on
the lens, which is proportional to Y7'. The larger value of this rati,,

that is, the greater field concentrated near the axis, the fewer will *.e radla-

:ional losses. in the case under consideration here, the ratio -- is equal t-o

2.5, thus the losses are very sma!i, and the field amplitudes with output from

two neighboring lenses differ cniy slightly fzrom each other. Mhe field aperture
di4stributions are rei4terated: the portion of the bundle field at r>a is absorbed

by the screen. The broken line shows the field amplitude at r-0. From a com-

parison of Fig. 1 and Fig. 2, it follows that with the existence of losses, the

bundle is narrowest not midway between correction phases, but nearer the preced-

ing correction phase.

IA mathematical apparatus of integral equations is used for calculating r-adi-

ational losses of a natural wave in systems with restricted correctors. The field
I- for the output from one corrector is taken as an unknown function. According to
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iz, the input field in: a su ent correction phase nay be determined from an

acroximacive solution '1according zo the Huygens principle) of a M!axwell equation.

The field as it exits from this latter corrector may be determined by multiplying

by 2i(x, ) It should differ from the output field from the first corrector by

cnlv tne constant factor. This leads to a homogeneous Fredholm integral equation

of the second kind, which may be written in the following manner for the desired

field:

re:.

The value % is an eienvalue for this equation. it is equal to the change /2

in field as :he bu.oie moves from corrector to corrector. Radiational losses

are 7- - Te bundle phase shift is determined by the argument of the eigen-

value :, and : -e field distribution within the aperture limits is determined by

the equation aigenfunction.

Depending on the type of phase correction :(x, y), the form of the bundle

(natural wave) also changes, as well as its radiational losses. There are many

systems which may carry a wave with small radiational losses. Up to the present

time, however, with no solutions for equation (2), it is impossible to determine

'hether or not a given system, specifying an aperture S and wit' a magnitude L

and function ;, will assure small losses. In particular, all systems of quadratic

correctors, whose focal lengths fall within the limits L/'<f<-, will carry a wave

with allowable radiational losses. The dependency between these losses and the

value ='ii2f for some values of the variable c is shown in Fig. 3. It is apparent

that the fewest losses occur in a system with confocal correctors (%-l). The

curves are symmetrical with respect to the straight line v1.

A common, thin dielectric lens is a phase corrector. in paraxial approxima-

tion, it carries out a quadratic correction, while the spherical, convex surface

of the equivalent bundle phases is transformed into a concave spherical surface.

The new radius of curvature is determined according to the "lens rule," well known

in optical geometry.

For the calculation of lens systems in optical geometry, concepts of "point

source" and "point image" are used. Each point in space for objects, according
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':ia. 3. Radiational losses in a
" \ "system of quadratic lenses.

to :-;-- .ins c Gaussian optics, corresponds to a point in space for images.

:eal optical s':.sems, systems possessino aboerrations, are not included in these

mechanizms, an- t'. leads to image dist-r:L~ns. Systems with thin, quadratic

lenses are closest of all tz ideal systems without abberzations.

In quasi-optics, there are no geometrical requirements disallowing abberra-

tions, at least in regular systems (equidistant, identical, coaxial correctors).

in other words, it is not at all obligatory that a ccrrector transform a soherical

front of an incident bundle into a spherical front of a hundle e::iting from che

corrector. Also possible, for example, are nonquadratic zorrections. Lenses may

have the form of bodies of rotation, whose formative part.s are straight line sec-

tions (that is, a corrector as a circular cone) or a broken polygonal line (for

example, a corrector as a truncated cone).

T.he natural waves in a system consisting of nonquadratic lenses represent

significantly more complex wave bundles than the elementary bundle described above.

By way of example, shown in Fig. 4 is the amplitude distribution of the field of

a natural wave with the smallest indices and having minimal radiational losses

in a quasi-optical system which is a series of absorbing diaphragms (v=0). It

may be seen from the figure that this wave is a wave bundle that is repeated at

every subsequent aperture, while the bundle amplitude decreases.

In the lenses, which are small dielectric wafers of variable thickness, the

phase correction is carried out as a result of differences in the optical paths
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-j ~a a" :a.I,- va-:,, 1a.On:s In l~ ens. .%"hen trlere is a sb

stantial lack of lo~ns-co rrzcto rs, t~ie ene rgy o f the bu:ndle is ref lec ted of f the

surfaces and abscl-'bed in t'.e dielectric material.

The reflecticn factor is removed either by means of the application of an

anti-reflectin7 coatinz [21, or by means of creating special lenses r4] of such

a shape that if they are turned toward the axis of the bundle at the Bruster

angle, the phase correction introduced by them is equal to the correction induced

by normal spherical ien-ses, an4 reflection from the surfaces is removed. The

output signal from a confocal line is shcwn in Fig. .5 (lens radius 8.4 cm, wave-

length 8 .:, iitance betwen lenses 175 cm), substituting a taih spherical

len -.adeof lexglas (efrctie idexn=1.6, focal distance 82.5 cm), with

a Bustr lns nclnedtowrd thesystem axis at various angles. if the incline

ange i _osetoa-ac t--,, tenwith this kind of substitution, a substantial

inceae -n ignl u, . o rdu t4onof lens surface reflcction is observed.

Is

t V

.- ig. ~ ~ 4."entrlwv fasstmo bopinsres

Itisno pssbl t d wa wthdiletrc bsrtin;inaditon wt
a~~~~~ ~ ~ ~ ~ deraei aeeghUh agn ftels nl neitn ilcrc

increases. In "'ueco wihtia rsn-h s ffcsnrfetn

miror, sggste i te cte woks(5 61 sem to. be&omsn.Paecr

recio .c hnaur a sarslt ofave of ac tht ofasrpftn fcrens. osoit
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* *>: ti = :irr r .=so ibe !if: ere : oaths. >[irro:s, inl di3 7C7Qon t3 4l s s , do

not rtrdi: iieic'ric losses. The ss > seI b-y the finite conductivity of

Fig. 5.Substituting a spherical

"cin cy means of a nonreflecting
lens (experimental).

Desin L fc$t*'at a 77i-::zr rea.'izes d hs correction of the bundle

in t-e plane not perpendilar :c the bundle, ne-vertheless it is possible to con-

strict mirrors which will carry bundles in a symmetrical fashion with respect to

the axis. They must have the shape of a surface section of an ellipsoid body of

rotation. A bund.le in a system of mirror-ellipsoids is the same as in a system

of quadratic lenses. However, simpler forms of mirrors (spherical sections) are

also quite acceptable; these possess astigmatism in the optical geometrical sense.

These kinds of correctors will conduct bundles of a somewhat more complex type

than those pictured in Fig. 1. In the cross section of a bundle in a line with

equivalent amplitudes, the shape will not be in the form of a circle but in the

form of ellipses. The formation of a bundle is determined by the ratio b5tt'een

the rad ius of curvature of the rnirror surface and the distance between mirrors.

In particular, it is possible to construct a quasi-opticali in which the am-

plitude distribution of the bundle field near the mirrors is symmetrical with

respect to the axis [71.

A quasi-optical mirror line will be more compact if the mirrors are joined

together in pairs (a periscope system, Fig. 6). If the distance L between mir-

rors in pairs is very much smaller than the radius of the mirror c, the phase

correction of the double mnirror system will be equal to t6he sun of corrections

for the component mirrors.
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g. . A periscope system consisting of
spherical mirrors.

For an energy evaluation of the line, it is necessary to determine the radi-

ational losses, losses in the lens material or ohmic losses with reflection off

of the mirrors, losses at the transmitting and receiving ends of the lines (the

more suostant- al in general the balance of losses, the shorter is the line), and

ie losses .n transformation of the wave types. Transformation takes place as a

result of imprecisions in manufacture and justifying, as well as as a result of

variations over time in the positionings of the lenses or mirrors.

n calculations for a line, it is necessary above all to sample the variable

c which determines the radiational losses of the natural waves. 't should not

be small, in order that the losses in the principal wave are not great, and it

must not be especially large, in order that the line's self-filtration mechanism

not be too small; self-filtration is the eradication of higher order waves, aris-

ing as a result of excitations due to irregularities, from out of the line. In

accordance with this, a value for the variable c is chosen between 1.6 7 and 2,T

for lines consisting of quadratic correctors.

With correctors of these sizes, radiational losses in the principal wave

are an insignificant fraction of the overall losses. Losses due to excitation

cannot be reduced appreciably beyond i dB. Losses to the correctors due to ii-

electric absorption and reflection off the surfaces are approximately 0.05 dB in

matched lenses and 0.15 dB in unmatched lenses [2, 81. Losses due to reflection

off of aluminum mirrors amount to about 0.015 dB in a mirror line if the electric

field vector in the bundle is perpendicular to the incidence plane, and about

3.02 dB if this vector lies in the incidence plane (9]. Transformation losses

in a long line are, of course, most substantial, if line losses due to dielectric

absorption or metal absorption are quite small.
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~incidlent on a dieformed or lisplar-'. phaso- corric tar . -,'s:-a-2 ment or deforma-

ion in :he correcotor disturb s the fi-ld phase fro-nt coic ftrit Adst1re

.ield can he expanded into a series Df undistuarbej natural s avces. wizh the expan-

sior. coeffizients as coefficients of connection bOetween the wavEs and conditioned

bv the deformations or displacements in the correctors. As caculations have

show-n 101, for a lens line, lens dicrta_-L-ent inthe plantc perpen'icular to the

ax--is has the greatest significance. For a mPirror iice. fl acdCiticn, ~tis rota-

t ions in the mirrors that are dangzrous. AS demands on c:zic no aperture

piacem-.ent of the mirrors are very high, iz is best to use -Prisccpe lines (Fig.

6., , in wnach each corrector cons ists of two mirrors -losol- jie together.

if attenuation of a high-er order 4ave arising- as a result of irregul1ar itiCes

is g,'reat in comc)arison wdith the dereof its excitation, a statistical! analy s

owihthe rotation of idiscoofua mirrors:

pendicular to the axis, and ,2 is the mean square rotation of :he mirrors (in radi-

ans). :n acco:rdanca with these formulas, for instance for a zonfocal lens line

with parameters 1-10 cm an:! X=1 mm, additional losses or, the corrector are 0.1 dB

with a mean squared lens displacement of v7=0.7 mm. In a mirror line with the

same parameters, losses with a mean square deflection in a single mirror at an

angle of v 2=t,', are also 0.1 d3 on the mirror. In a ocriscope mirror line,

where the distance between the centers of the druble mirrors is E=5 cm, the same

losses wil.l occur with an angle of incline in the dotuble mirror system of V 2=76

By ay f ilusratonof the gain derived from substtuting a single mirror by a

34



~<r Xparne~r L. t-~ lim %,-z.ive range are shcwn'

1c 7. AL::il-iar-v losses in a line
* / ~:nm, L lD cm, =8i)

-. u he rotation of a single mirror
/ ano a double mirror svstemi.

ss7r n r6s (' t follows t, azal D n-cr eni:_ ons being equal,

losesincomparison with losses in a ccnfocal svsttAn increase. For this reason,

isogreat interest to find a value for f which will give the least number

of overall losses (radiational lo-sses plus t_-_ansformat ion losses) at fixed: a, L

wi4th mean square displacement values v762. The relationship between the optimal,

value for the %variab1 e -L!2f and the mean square lens displacement at various

valueo of c is ziven. At 6=0, as may be expected, an optimum is achieved in a

confocal system, that -is, at f=L/2. In Fig. 9, overall losses in the_ principal

wave in confocal lnes and in lines with optimnal variables are cited-.

if the system self-filtration is smzil, or in other words, the lens width.

is zreat in comparison with the bundle width, then an investigation of, deformation

and displacement influences based on optical geomietric analogies between a bundle

and a ray are more effective. The movement of the center of the bundle in a line

wdith displaced- lenses obneys laws of paraxial optics. Under these conditions

(C--27), lens displacement merely causes a shift -in the ibundle as a whole with res-
pect to the axis, and losses arise as a result of this only in the case when the

bundle approaches near the edge of the lens or gces beyond it. At the same timiz,
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roat lne Iwl be tigrates whe. therfoal lenossh of the lenses~a

isthe smallest. Feor exuamplens is a wavcossinef63lneswt:an

Lt,;r is n dos iseto aclt eqa to0nr,:he prosability of projecting the bundl eodte'

beyond Thle limits of a circle with1. a radius of 20 mm is equal to 0.01.

A more complete analysis, one that would make it possib-le toestablish the

probabilities for certain kinds of fixed losses in a given line, car, be carried

out by mreans of :,acnine simulation of the process of bundle prcpagatton in an

ensemble lin~e wi-th. an arbitrar, displacement distribution.

Experiments on the transmission of millimetric and shorter waves, up to light

waves, in open quasi-optical lines have only begun and are being carried out in

several countries. In the theoretical aspect as well, there are many unclear

problems that are being subjected to study, but a preliminary examination of

these problems reveals promise in the ideas. it should be noted that in the case

of lines which are not very long (lines that are only a few times greater than

a2/A), lines made of nonhomogeneous correctors, which are possibly simpler to
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2G. >alkih

Ore cf the methods for an approximative synthesis of equidistant and non-

equidistant antenna arrays is analyzed; linear and planar arrays are examined.

Introduction

Recently, great attention has been afforded to problems in the theory and

practical ap iications of antenna arrays. The importance of i:vestigations of
these kinds of antennas is determined for the most part by the fact that they

make it possible to control the radiation pattern diagram (directional pattern

diazra . directivity diagram) across a wide range by means of varying the signal

phase of each array element.

However, the advantages realized from applications cf antenna arrays encoun-

ter substantial obstacles connected with the fact that in the formation of a

narrow radiation pattern diagran, a large aperture is required, and consequently,

also a large number of array elements. In fact, as is well known, for generating

a narrow radiation pattern diagram that scans across a broad sector, with a small

level of side lobes, it is necessary to arrange the elements in the array at a

distance from each other not exceeding -. If this condition is not fulfilled,

with a beam deflection at a certain angle, quite significant side lobes arise

with secondary peak values for the antenna array that are not always allowable.

However, this kind of condition is practically never fulfilled, so that at the

same time, the required number of elements in a planar array with a narrow radia-

tion pattern diagram reaches several tens of thousands. The construction f

these kinds of antennas becomes a decidedly complex task, and their costs are

extraordinarily large. For this reason, the problem of developing controllable

radiation pattern diagrams of a determined shape by means of antenna arrays with

a restricted number of elements has become very important. Consequently, the

basic task in designing antenna arrays is the creation of the required directivity

diagrams with a minimum number of elements. The use of nonequidistant arrays,

that is, arrays with nonuniform placement spans between the elements on the antenna
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o: a' tna arr]- Zk P- , SibLe r0 create radiatiun pattcrn diaaramns with a

_. i*. Cf inor Io .

The nuzser of ",Irks that ha-:e been published dedicated to the studyv of the

;arious problems in the theory of antenna arrays is quite large. Recently, a

serie s of uor .:j .as aroeared showing studies carried out on nonequidistant antenna

arrays. In some of th.em, atzempts were mase to develop methods for designing

- I these kinds of arrays; however, there is to the present no general theory for

the design of these kinds of nonequidiszant antenna arrays.

The rethod for designing the kinds of antenna arrays analyzed in the present

wcrk makes it possible to determine relatively easily the placement of the antenna

radiators, as well as tne current magnitudes in the radiators that will assure

te generation cf radiation pattern diagrams sufficiently close to the required

cne.

1e shall examine oc first methods for deriving a determined radiation pattern

diagram by means of equidistant arrays, and then we shall prcvide a solution for

the same problem using nonequidis:ant arrays.

Planar Antenna Arrays with a Raeuired Achievable Radiation Pattern Diagram

As is well known , the radiation pattern di4gramn of a system of discrete,

singly polarized radiators, arbitrarily placed in a plane, is expressed b-. the

follcwing fcrmula:

where D (,9) is the radiation pattern diagram of an n-th radiator (the n-th de-

ment) of an array; N is the number of radiators; dn is the distance of the n-th

radiator up to an arbitrarily chosen point in the plane X, Y. taken as the zero
point for the coordinates and called the center of the system (Pig. 1); 1n is the

angle between the direction towards the aiming point and thie lines joining the

center of the system with the center of the radiator; 3,1, are the coordinate

an3les of the aiming point.
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Fig. 1 Planar arrav of
. ]radiators. Coordinate system.

if the angular coordinate points of the placement of the n-th radiator are

designated ':).' thn

In the case under consideration here, the radiators are disposed in the

same plane X, Y, and thus G-7'. As a consequence, if we take dn Cos "'=x and2 ".%9 n n'

d sin "; '- then:
nl nn

D " . -. e C . - .

Formula (2) applies for any system of radiators, with an arbitrary shape,

disposed in a plane. In this case, if the array is ccnsttuted of identical radi-

ators with the same radiation pattern diagrams D1 (O,? ), but differing from each

other in current amplitude and current phase, then:

0! in (r,.,,

where F =E e-n are the complex factors characterizing the amplitude and phasen n

of an n-th radiator.

The functions D(G,*) and D!(O,'P) are taken to be known, and for that reason,

the problem of designing a planar antenna array reduces to the determination

from expression (3) [or (2)] of the unknown factors Fn and all the values of xn

and yn" It is possible that this problem as well will not have a precise solu-

tion, because not every required diagram can be represented in the form of formula

(3) [or (2)1.
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.:e s'a 1 1 ex amin, a ---aucin pu :t.-r: dia;ran in a certain pine = ns.

A- the same time, the value cfL (-)=x cos 4 v, sin $ is aiso Ocual to a con-
n n

stant magnitude. It is not difficult tc see chat L (4) is a projection of the

dis-ance from point zero, the zer: coint of the coordinate system, to the radi-

ator center for a beam lying in plane X, Y and being projected from the zero point

at an angle 1 . In this way, the radiation pattern diagram in the plane wherefI;;p is in agreement with a radiation pattern diagram of a linear array, whose

radiators are placed on the X, Y plane along a straight line 4=-p: at the points

L ) :

Ir follows from this that the conditions for achieving a radiation pattern

diagram, as well as the methods for finding a solution to the realizable diagrams

in planar arrays must be the same as for linear arrays. We transform extressicn

(3), and we arrange the coordinate system in such a way that the absi-Ssas of the
i 1 ,

two extreme points of the system are equal to -- and , and the ordinates of

the two extreme points are equal to - 2 and 1 - (Fig. i). At the same ti, we
2 2

shall select a scale for the radiating system in such a way that the raciators

are disposed in a square with sides equal to 2-. For -his, we take -- x . , and
2-T L '
-- nV . In additicn, let ,12-n nq

D!(®,ip) R(z-,Z2), and then:
D', 1 ( 0 , z 2,),

._D' ,,J)
The function R(z,,zz)-Di(,-- is called the array factor.

We shall fix one of the variables, for example z2 , and take R(zj,-_ as a

function of the same variable z:"

This expression is similar to the expression for the factor for a linear

array of radiators. Fixing z, in exactly the same way, we get:
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.. zhe funetion R(zz 2 ) must belong to whole, lmost periodic,

:unc:ions of a finite degree with indices alo , and O2e., corresponding to each of

z.:, variables zj and z-. W'e shall denote the class of these kinds of functions

If the array factor belongs to these functions, then the field distribution

across the array that precisely reproduces it can be determined by using a double

• i1, ,11i

In fact, changing the order of summation, we get:

Here, 04 is the periodic delta-function, equal to 0 for all y

-'ot equal to n-n=0, 1, 2.). At the points y=±in7, it goes to infinity, while

,---equently, f(x, y)=f(p V )=F 2(0).
p p p

In this way, the function f(x, v),determinable by means of the double series

(8), differs from the field distribution function across the array, which creates

the determined array factor R(z1 ,z2), only because of the presence of the factor

i2(0). In what is to follow, this factor may be ignored.

if, however, the array factor does not belong to the class 3' , then it

is impossible to reproduce precisely. For its approximate calculation, it is

necessary to approximate it preliminarily by means of a whole, almost periodic

function of finite degree.

Insofar as the methods for solving the problems of designing a planar array

are identical to methods for solving problems for linear arrays, we shall examine

linear rays first of all.
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'i,"e shalltk an odd number of radiators N,;2n-l arnJ exp;end t'h-em a long a

s~ra~: la : eco.'al*i~re from each other, equ;3: tc ~ Ten , zta'.,ing -CD,

.4e may; g~r~ iex~rs e-u in the f orr.:

v. ;ire ;;.~ - ~ , am-

i:.s necessary I-) chuosz t*n-e coeffcients of and clhe aumber nin sUcn

a way that tb,-e right-hand memiber of formula (9) isthe f ixed functioa RMu) with

my rxc _,egree3 accuracy..

e shall search for a solution in the following form:

Substituting this expression into formula (9), we find:

.4 'n~ t

The right-hand member of the derived expression contains an interpolated Eriz-

onotatric polynomial with equidistant interpolation nodes. it is not difficult

to see that at the points u~p 22-: h r s a h l u b r

I , hr pi woenubr

Consequently:

P

he properties of the interpolated polynomial (i aebe tde ut

well (see [1]). As is well known, if R(uj is a whole function, or a contirnuous,

periodic function wit,- a period of 2-, satisfyinig the Diri test, then the inter-

poiational series (11) with a li-mitless increase in n will uniformly ccnverge

along the whole axis to the function RMu.
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Coa.eent, if R(u) is an in: z-ai funtion or a continuous, period func-

zion satisfying the Dini test, then it ma-'. be represented approximately in the

:orm of (Ii); at the same tim:ie:

Te dearee of apro.iation of the assigned function of polynomial (11) de-

pends on the number n, that is, on the number of radiators. The larger n, the

more precisely the assigned radiation pattern diagram may be determined.

Tn this fashion, then, there are serious limitations to a fixed radiation

pattern diagram. That is, it if is not an integral functicn and it does not

satisfy the Dini test, then with an increase in n, the right-hand member of ex-

pression (11) will not converge to function R(u),and it is impossible to derive

a good approximation of a derived radiation pattern daigram for a predetermined

and fitxed one. in this case, in order to improve the approximation, the fixed

diagram shculd be approximated beforehand, -s this is demonstrated in [2], with

any arbitrary degree of accuracy by means of an intergral function of the form

Um(Z)P,,(Z) (k<2m), where P (z) is a polynomial of degree k, _)- (Z

after which this function should be represented approximately in [V'l

the form of formula (11). Thus, series (11) will converge to the function R(u).

It should be remarked, however, that series (11) is a periodic function of

the variable z with a period of 2n. For this reason, lobes equal to the magni-

tude of the major lobe (so-called secondary peaks) should arise across determined

intervals in the variation of z in the diagram. if 2n-, the secondary peak

values will be found outside the area of actual angles.

Consequently, in order that the radiation pattern diagram have only one

major lobe, the number of radiating elements in the array N=2n-i should be not
1

less than the number , that is, the distance between radiators should not ex-

ceed the wavelength, but with beam fluctuation, these minor lobes may arise.

In this way, then, we reach the conclusion that the distance between radiators

should be within the limits -d<X From this, the number of radiators in a

2 1linear, equidistant array should be of the order 2
!
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e shall' exam'ie now t uSe when , .zi rs ara disposed on a plane and

rm an rthcgna array. Let the number .f radiatofs disposed along the same

Line n ;=n l and c-he nu-ber of.- -a, .to-' " rs in the same column be .2.a-' o

in this wy, the number of e eents in all in the array is - =2+)(m- )

1 or -- is case, exSresson -" , ma* - w,;ritten in the form:

-',e liscanc - bteteen eltents-in each line b equal to d;, and in each

cclu:, d-. .e shall int rduce the folirwing nctations:

d d,)
Ul=27 sin cos., u-2 sin s in b.

For this, pzi=pu1, "Z-= u2 .

Cnsequentlv thus:

In the given case here, we shall sear:n :cr a s:,1',tion in the form:

. .-n

', ' ie -, .. .Q 6

wher2m+l

Substituting e:-prassion (15) into (15), we get:

" 2 2 .' , 2 '

If we take into account formula (12), it is not difficult to be convinced /-

that A. ,R' (ka, 12). Consequently:

:f the array factor has the form:
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The interpolational polynomial (17) will zon,/ergE to: the function R' (ui u2-:)

in tne case wham it satisfies t'Oe 1 trminid ccnditlors which are analogous to

the conditions for the l-inear arrav. --he de-ree of approxination depends on the

.iurnber of elements Ni and Z he lar~er Yl, and N'?, the more precisely will the
asindfucinR'uu)be assured, that is, all the ieficiEncies of a linear

arrav are innErernt to a planar array Las y.ell.

Ncnecuiaistant Linear Arrays

Improving the approximation of a derived radiation pattern diagram to an

assigned on-e is possible not only by means of increasing the number of radiators

Dn a section (--, 7), but also as a result of their more rational placement.

In fact, from the theory of interpoation it is well known "hat for purposes

of imprcving the convergence of interpolational processes, the nodes should not

be taken to be equidlistant from each other, rather, they should be placed sym-

metrically with respect to the center of the interval, concentrating them toward

its edges. Consecuentlv, vihone and the same n, better appro-ximacions will be

derived with a n-onequidistant array'.

We shall go now to an investigationo~ of nonequidistant arrays.

As -was demonstrated ia the cited work (2], functions of the class B' that

is, functions representing a series of the type (6) or (7), can always be repre-

s nted in the fo 2jowinp for!:

It is not difficult to note that if R(z) belongs to the class B', then f'(y)

is a step function, and expression (19) -nay be rewritten in the form:



. ... ....... .__"T_- - . .

N -.. .. _ - +

-e -.31n at :iC:" :un-ci :v - ms -3re ._' ated by S and F_
th.e magnitude of t*- ' n t'is sas=, 6, pree of Snthesis may e solved

xLcZ :i -r . st 7 Z e a : PC - -  
_ < . The current

n n'tuC,_s in t:'e ede r a1 fa.s :ust be u-- ') an F ( -- ),

ano at, Xhe points a Q,0  K andF raspective1-.

.,e shalt .ak - 1ock a: an =:.zmae. Lec .

-- r- -- -, -. - -7

-i-7Z

f" "=f'--)= , =,. ,e:I., t 2r;a:" fe::o' c,--- is created by

tore,:! 7oin= radiators csacsed a: tha point: -,.2, -- _t> ,:irrent amplitude

eq-ual t 1,4 ,'  '4 rsetvl

If R(z) is an integral function of finite ier., ut does belong to func-

Stions of t'he class 3', than the function -:(y) can have -lumps, but in the inter-

va!s -etween umps it will not be a conscant and it will not be possible to repre-

sent it in toe rorm nf txpressi.:n (21. he ucticv . p- nar :e 'p7r-::i.azed

;i ti7 any degree of eccurac y - eans of a st 9 fucri:n, ar.d R(z) n&." be repre-

sented1 in the form of (21). For this, the right-hand mnemer cf f or ... 1 a i

wil1 ?--Proximatelv represent the assigned function ).T'- deCree of approxi-

mation depends on the number of degrees and where tey are placed. it is natural

that the greater the number of degrees taken, tme more trecisely wi11 'Jnctionl

R(z) be reoresented by a function of z1ass B'-. At the limit c- an in finite num-

oer of degrees, we get a precise equivalence,. t is pzssible to select te place-

ment of the degrees in such a way such that the macnitudas of all the -umps of

function flty) will be identical along the whole alternatin interval v "rem

,4=0 to y=-r). For this, we derive an array with identical points in its elements;

and this is easy to realize in practice and convenient f:r exploitation.

We shall give an evaluation of an approximation of a derived radiation pat-

tern diagram to an assigned one.
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:. eri - - -'Y .-atr e rep9ressr.t' n Ld ntefr-
I . I

f a en - : 7,'

.,-. n ating the fntion f . _ing for:ula

(19) intD accounz, zis ossible to -rite:

.. . .. _ .... _hI S a 'a ic , w.ie ze :

-where s t- n- e rA't n d' e o :i& jum-. of funct-- n t y)o . Con se-quently:

Ti e5:za:e is tuite. r As ca cuiatizns s:-ow, 4n actuality, thE de-

rived aoro::imatio- is sin'ficantiv higher. However, t-is estimate shows that

withsmall' values .or z, for instance, within the limits of the major lo'e and

several of its Drimarv minor lobes, te nroximation is cuite

Another e::ampe. Let:

where a is a certain variable.

As may be seen from this expression, R1-) is an "ntergral funutiz n o:

degree, restricted to the real axis, but not belonging to functior.; of the class

3'. Ct is possible to represent it in the form of a sum of two functions, one

w hizh belongs to the class 3_, and the other to the class .'As a conse-

quence, it is impossible to derive this radiation pattern diagram only by means

of a system of point radiators. We shall attempt to do this in an approximation

fashion. We shall find -irst the functiorn f-:v):
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::- c r,' f l(v) is S" ,, the fJ"- re "i,
.. ......-e. 2. As ma, be seen fron tne r:gure, it

has jum.ps a: tree ncints, +=, 0, and - -. Iowevr, in t:e intervals (', v) and

1-* 0), it is not ccnstant. We shall approxita' vY) by means ta t rfuc-

Lon. We -ak_ the number if steps to be eauai t-- 21 (13 steps on each s'ie of

Fi4'4. A n ap roximation of
y v , y means of a s-ep func-

f--

II

the E7- er t-ra' We place :hem in sucn a manner th1at ce magnitudes of

all the ,mroTs : -'e fr-nction are the same across the whole variation interval

f" -" fr f-() -f ') A: the -point v=O, .(--= 0 a. and at tne paintsv=,

f" ) has a maximum vaiua equal to -a--. As a consequence, the mag:nitude of the

jum;S must be eqa to - =-. Ihe points at which fl(y) have jumps
10

are so'wmn n :he acconpany.ne table.

. . .-'' ! ; ' : 2 ." . - , , J A;' ] - ' . - ' ; -

We take the magnitude cf the Jump of the function fl(y) at the point y=G
'4 a ,7 a

to be equal to -- +-, and at the points .=±, to be equal to At all thea2
cther points, the jumps will be the same in magnitude and eqcal to -. As a

consequence:
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-/

as~~~dfurc cn Rz)(c,.rve 1) and the ffntsR*(u) ap-

-rare sh rni i. - cagrams are -

:fra.I sL n i

----------------------------------- d; 7

cosrutd corig oth ied A a b eea od proiato i e

It shoud be nted that ter apiain cairriaes ou her isigod not an -erJ-xa

onstructd aorings toai the field.t asmyitbes, take good appoxiematio islde

rihe frra ents exceedgre.aTe frmo loe ofnra telered twradaton edgeteents

thenrat is posilewhtowe tiniiantyrc the minor lobes asind ar~at, bth

digifeigam hioe thansithed corspondn minor vles of thzsine.irm

Nonequidistant Planar Arrays

The method for calculating nonequidistant linear arrays examined above can

be extended also to planar, nonequidistant arrays.
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where f(::, sis - ;:c fur.czir wi:h the two variao-1-s x, y equal '_L:

&.2ul tin the inte raI 2 r 9-A" ""t

t
,i he function t ., is .Um f the for. of f.rmula (5), then f(x, y)=F n

fir corresponding values of ar, d " the functi:n D(z:, z) does not belcng

to class " , but it is an integral function of finite degree, restricted to

the real axis, then f(x,v) ,Till not be a 3tep function; it may have jumps or steps,

'ut in t;:e interval jetween jumos ':3 wa ill not b2 a constant. Consequently,

in this case it is possible to orovide an approximation cf the assigned radiation

pattern diagram by means of approximating f(x,y) as a step function.

if function R(zi,zz) is fixed in the form of a function that cannert be repre-

sented in the form of expression (23), then it must be pre1iminarii:., approximated

with ary degree of accuracy, previously fixed, by means of a function of the form

U (z,,z 2 ) ? (zj,z2), belonging to functions of class W ,' as this has been
m,n pq -,

demonstrated in 12]. Then, using formula (24), it is necessary to determine a

functicn f(:.:,y) which, in its turn, must be approximated by means of a step func-

tion. The degree of approximation of the function f(x,y) also determines the

degree of approximation of the derived radiation pattern diagram to the assigned

one.
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Akh~zrN.1. 'ek:sii Do teorili aooroksimatsili [Lectures on the Theory
~f .~roxmatin. Naukn, 1965.

Z.elkin, E. G. ?ostr-,ePnive izluchavushchev sistemy po zadannoy diagranme
naoravlen:.st1 [T C~nstructicn of a Radiating System According to an Assigned
Radiation ? ttrn Diagram'. Cosenergoladat [State Scientific and Technical
12ower-Engineerin.g Publishing House], 1963.
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T:; :ZIITCRY 0O v ':7_. ... R,"gL .,. '_.. ... .. .. A.:;::N U,.A-"... DCS:G-' A::D . .... .S':-'. ;.E S

Several problems in the theor-: of radiation system design are examined.
- .is demonstrated that mixed problems in synthesis and design can be reduced
to nonlinear integral equations.

-he conditicns for the existence of an exact solution to mixed synthesis
and design problems are examined; methods for determining desired amplitude and
phase distributions along a linear radiator are indicated, and it is proven that
mixed problems in synthesis and design do not have unique solutions.

A unique method for calculating unknown current features in the antenna aper-
ture is suggested for all types of mixed problems. Under some conditions assigned

to the problem variables, it is proven that there is a soiution and that there
is convergence in the computation process.

[n-roduction

ormally, problems examined in the synthesis and design of radiation systems

reduce to the determination of the current amplitude and phase distribution across

the antenna aperture at a known vector (in the general case) radiation pattern dia-

gram. However, it is often the case that a synthesis of only, the amplitude or

phase cf radiation pattern diagrams is necessary, while the current amplitude or

phase distribution along the antenna is assigned. In practice, these kinds of

problems are encountered more and more often. A series of examples of these kinds

of problems is examined in the cited work [2].

Problems, in which the amplitude or phase diagrams are fixed, as well as the

current amplitude distribution and current phase distribution along the antenna,

and in which it is necessary to determine the remaining two features in the diagram

and in the current distribution, are called mixed problems in antenna synthesis and

design. individual questions in the theory of these kinds of problems have been

investigated in a series of works [1, 2]. It is possible to distinguish the fol-

lowing types of mixed problems:

(1) to determine the current phase distribution along a radiator and the

amplitude radiation pattern diagram realizing the fixed current amplitude
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............ aionz a radiator and tha phase radiation pattern diagram;

(2) to determine :"e current amplitude distribution along a radiator and

the phase radiation pattern diagram realizing a fixed amplitude radiation pattern /4

diagram and the current phase distribution along the radiator;

(3) to determine the amplitude radiation pattern diagram and the current

amplitude distribution along a radiator realizing a fixed phase radiation pattern

diagram and a current phase distribution along the radiator;

(4) to determine the phase radiation pattern diagram and current phase dis-

tribution along a radiator realizing a fixed amplitude radiation pattern diagram

and current amplitude distribution along the radiator.

Initial Conceots

In what is to follow, for simplicity's sake, we shall consider only a linear

radiator whose raoat:Thn pattern diagram can be written in the following form

D i -" Fit)exp itKsint .dt,

where x=- ; X is the wavelength at which the radiator functions.
A

XX

We shall introduce a substitution for the variables: q sin G=u, t= 2. Then

the function D(S) is transformed into a certain function R(u), and function F(t)

into function f0 (x). After a series of noncomplex transformations, equation (I)

may be reduced to the following equation:

P u'i exp i u) = i /(.t exp 'x) expjuzx dx, (2)

where the function of f(x)_'-fO(x); 2a-. is the electric length of the radiator;

M(u) is the phase radiation pattern diagram; 4'(x) is the current phase distribution

in the radiator.

We shall assume that function R(u) belongs to the class W (this does not

disturb the generality of the comments here, inasmuch as all radiation pattern
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iz-an.s that can be realize.- belong : tlis class). .,en, in accordancevith

te "i....-i > 'i .... r3]. t- fo ..-win. - ol~s:

It should be noted that for functions of the class W, the following inequality

1s derived from equation (3):

As is wel! known, under the conditions indicated above, the function of the ,L

amplitude-phase distribution of current along a radiator is determined from the

wlhile outsid-e the segment [ J ~ 0

Equations (Z) and (5) are baseline equations in considerations of questions

n the theory of mixed problems n he synhesis and design of radiating sstems.

SConsequently, the four types of mixed problems indicated in the introduction. re-

duce mathematically to the following:

(I) kno,.,n functions o(i) and f(:a); it is necessary to find the funo-

tion :,(X);

(2) the functions R(u) and :(n) are known, and it is necessary to find

the function f(x);

(3) the functions P(u) and ,)(x) are known, and it is necessary to find

the function f(x);

(4) the functions R(u) and f(x) are known, and it is necessary to find

the function (x).

We shall demonstrate that the solution to each of these problems may be repre-

sented as a solution either of a system of integral equations, or as a solution

of a linear integral equation. With this end in mind, we shall transform expres-

sion (2) into the following equation:

R = ft(x) exp i[.,x)- i .- :,, v,
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nary ,'r.:-_.-,., e. he. .- .... -....

zeduce the consideration of all types of the mized problems to a consideraticn

of the following system of integral equations with two unknown functions:

As a result of similar calculations, formula (5) can also be represented

A M 's La tr , i- . r.s:

I ,? (, ) cas T <-, -- ( .')- : .x au ----p

\ 2 l:.Isin ,- ,:u) - ; (.x -~ i; -, 0

The reduction of mixed problems to systems of integral equations Is also

convenient from the point af view that these systems may be solved with the aid

of approximate methods in numerical analysis, which will not be examined here.

One cf these kinds of approximative methods is cited in work [11]. It is a simple

.mater to see that equation (2), after simple transformations, can be written in

the form of hE fo)lowing system of equations:

ii S if r, V'x)ir.E (x) u ] dx

and ecuation (5) is equivalent to the following kind of system of equations:

f t. ers -,v =' - P ,. cos [ ,. - '.j] d
l -; x I0.

We shall examine in more detail the reduction of problEm 1 into 'onlinear,

integral equation, with the recuction method for the other problems to integral

equations being similar. Multiplying equations (9) by sin (u) and cos -(u) res-

Tectively, and assuming that sin (u) O and that cos b(u)iO, after transformation

we get:
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TI thie cns. whe2n si: (u)=Or : where '<=1., )], or 7 u3s (L)= c)

-- Kcr ~ h_, a7] tisaSO a SIMoDLe Matter t eccnvanood _ that from

q a c n o~ne of' tht," noa 1in e ar ac--acioni rss se (9 C. rops uit-, nd'i,-

n'a:ce solved, it is coss-ble to find the cturrent phnase distribution along the

antenn.ouin (1) s i.near, integ ral equation with raspect to tine

neow :nctio-n ..}x By. means of similar considerations, _'L 4iS possible to

demonstrate that prrobier. redluces to th1e followin.- nonlinear integral cuatiin

It is clear that if as a result of the solution to equation (12) a function

(u) i s found, then f rom equat ion (5) the f unc tion f (x) will1 be de t erminedl e as ily,

and as a result, problem 2 W4ll be solv ed. Problem 2, as it is cleaarly seen, can.

also be, reduced to a solutilon of equation (11), which with resoect to the desl-r--d

Zunction f(x), isz nonlinear . And, finall-7, problem 4 red'uces to a nonlin-r n-

te-oral equatio'n after simple transfo:rmations, whican is dffferent from the f-corego-

r 4-nz ones. that is:

7 a t i, ,.S 1),(2~ an I : n. c vit:n n e c rra tio Ial1' form:

where P is the integral operator correspond-ina to thle acuat1-ons, an-' X is the

function sought.

The Solution to the Operation-al Equation ?P(X'=O

Let C be a measurable set of f inite or infinite cardinality:. 11t is possible

to demonstrate 141 that the aggregate of all continuous real functions a(x) on

G forms a Banach space Ej, if the norm :i(x) is set by the equati.;n:

x t

It is possible to show in the same way that thie aggregate of all continuous

real functions 3(u)=Pti(x3 on G forms a Banach space 7-, if we assign the n~ormn

2Q(u) by the equation:
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c is *s i t orove b5 using the thory of operacors [5] that the opera-

tor P(x) rmined above acts out of the space Ei into the space E2  Then e'ua-

ti:n ',I,) is so!-d b me:'n, )f a sn4e step method of constructing a series

nh : con,.'erg.2_ :,D i s lt.!u iah:

where is a certain operator acting out of space El into snace z 2.

The justification for this suggestion is grounded on a series of theorems

'4, 5, 10 which make it ocssible to indicate several conditions that are suffi-

cient for the existence of an exact solution to mixed problems of synthesis and

design. It follows from the formulations cf the majority of theorems indicated

that the important features for their applicability in the case under considera-

:ion here is proving the differentiability (according to Fr4chet) of the operator

F(x) and the fulfiliment of the Lipschitz condition for the derivative P'(X) [6,

7, 8]:

where L is some constant not depending on X and Y.

The fulfillment of the other requirements of the theorem is assured by a

suitable selection of an auxiliary operator A (Xn) and an initial approximaticn

I 0 in calculations, it is often the case that it is convenient to take the opera-

tor 3P(X) for the A (X ) operator: A (X)=BP(X), where 3 is a linear operator
n n n

acting out of the space E2 into Ei.

If, in particular, B=[P'(X0)M-1 , then the series (15) gives a modified Newton

method; if, however, E2=El and B=aI, where I is a unique operator, then a method

of sequential approximations is forthcoming [4].

The Correctness of Mixed Problems in Synthesis and Design

In considering mixed problems in the synthesis of radiating systems for the

determination of desired current amplitude and current phase characteristics in
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a radiator, i is not "-uatfnrs (21 3nd (5) that were us:, h.t the irtegral ecua-

tions of the form PGX)=0 arising out of them. For this r~aoon, it is necessary

to male clear hethr or -not the solotions found for this equation satisfy the
in- isl integral equations (2) and (5). For concreteness, we shall consider prob-

le-n 2 and prove that the function :(u) derived from equaticn ,'-12, together with

the assigned functions R(u) and (x) satisfy the initial int-cral equations.

We shall suggest that the phase radiation pattern diagram :(u determines,j after it is s-bstituted Into equation (13), a second current distribution fl(x)

and a second current phase distribution C'(x) in the radiator. Then, after some

simple transformations, it is possible to reduce equation (5) to the following

As t(x, is a solution to equation (12). the ollcwin ra1aticnshi also holds:

C'R,*L~)in ,'.,- , c) , - UX, JU = 0. '.,-

After adding and subtracting termwise equations (16) and (17), and after

elementary transformations, we arrive at:

I -. (x - (..,) ., x) - VLc; . -_
\ ssn'ku)- 2 -'-- - -iXcc

W W
R 'u1 cos rqiu) -. x) .4- u (x) sin . - : x u

L2

Taking into consideration that cos .40, and that sin I *0.
2

we can write:

Multiplying both members of equation (18) by i and adding both equations

termwise, we receive after a series of computations:
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- e of equation 20) n1ay be considered to be a radiation

z-en a.. j f a radiator with an amplitude distributcn of R(u) and a phase

* i....butio: . or : .). 7rom physical considerations, it is c'zir that it may be

nidentical to zero *nly in the case when R(u)=0, which has . -: vsical sense. In

this way, t solution :(u) of equation (12) is the solution for problem 2 in

the svnrhesls cf a radiazor. We should note that if sin ()-i (x) 0  then

)=!(x)---<(<=c- 7). ,ut this means that physically, by means of the solution

one and thie same current phase distribution is realized in the radiator.

fCos"_- -, then (x) () :x). in this case, as one may easily be con-

vinced, proLc lom 2 ma' se rasolved by means cf a simnle substitution of the value

of ox) into equation (2), if equation (12) has a solution M(u)±7, and if, obvi-

ously, it has this solution. Thus, the determination of the function ((u) com-

pietel* resolves t.c: mix ed problem 2 in the synthesis of a radiator. In the same

way, it may be demonszrated that solutions to equaticns (11), (12), and (13) are

also solutions to the corresponding mixed synthesis problems.

It is interesting to note that the theorem presented in [101, when all re-

quirements indicated are met, yields the possibility of finding the necessar-; cur-

rent amplitude and current phase distribution along a radiator that realize the

assigned radiation pattern diagram, but they do not guarantee the uniqueness of

the distributions found in this way. As is well known, nonlinear integral equa-

tions, speaking in general, do not have unique solutions; this has also been ob-

served in the kinds of synthesis problems under consideration here. In fact, if

attempts are made to synthesize or design an antenna with a phase radiation dia-

gram equal to zero, that is:

under the condition that the current amplitude distribution along the antenna is

a positive function with respect to the zero point of the selected coordinate sys-

tem, then a synthesis of the desired radiation system can be carried out if the

current phase distribution along the radiator can be realized physically in the

form of any odd function. In this case:

i - 'I - '" uxi" - si n i v) -7 u - x

when sin i(-x)+u(-x) -sin o(x)+ux!. A similar situation may be observed, for

example, in the synthesis of an antenna with a positive amplitude radiation pattern
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whe-e ;(u) is any arbitrary odd function with respect to the noorcinate system

id.a,,1 -atjns of concrete current 1istributi.ns co rrespcnuing to this case

-an bz found in the work cited rl"] Finallv, by .-..cans -of a direct substitutioa

in a-ca: i.r. '13), it is possible to convince oneself that if (x) resolves theSmixed evnth.-sis orob"lem number i, then any current- phase -lstributica aion2 the

radiator cia::m

.1,_'- ' -is a arbitrary constant, will also resolve this proh>..

7rcm Iar nas been explained above, it follows that mixed synthesis proble.s

of radiation systems, in the absence of the normal kinds of synthesis problems

onsidered, ha-ce (in the case when they are realizable), z<eneralv speaking, no

t unicue solutions. The auestions in the theoc f mixed synzhesis probems under

determined onditions exained in the present work nay he -eneralized also for

a two-dimensi-nal radiating system, and also for systems of discrete raliators

(with the help of the Stieltjes integral).

In conclusion, we should note that the integral equation (12;, correspond-

ing to nroblem 3, is linear, and for that reason, after transforming it into an

equation with a symetrical core:

where:

it is possible to apply the following recurrent series for determining a desired

function of current amplitude distribution (if a solution exists) [91:
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.Ih-, Iogy zor studcying binary sources of extraterrestrial radiofrequency
emissiz ns is arnalyzed; the methodology is based on the theory of the complex co-
efcientof er-,ike collerence and or. che application of an interferometer with

a -riase s.ifter. "'ethods for dIetermininga the angular distance between the sources
are asm~~ .s-el! azs -.he ratio*, of their intensities and their ralative posi-

Two nethods are used for studying the structure of complex exctraterrestrial

radlic-f::quenc; i-zurces. One of them is based on the apparent retardation in the

-3c:.iroea as 4: o a-s~ cr ss :.'ia meridlan . n the seae thod, suggested by

=,scn L'a trD_-at ;nainerfe:rometer is used. Loth, -methods are auite

ccm~ x

in the present arti;cle, a particular case of the complex structure is studifed,

*that is, bainary scurces. A comparatively simple method nay be suzgested for

* .easur--nz- thleir parameters. i7t is based on an analvsis cf the complex ccefficient

of fluctuation :unerence in the interferometer antennas corresponding CO the

sources [3] and or. the experi4mental determination of the magnitudes characteriz-

ingy this cceffioZient. 7his latter is connected with a luminance distribution in

the source by n- eaas of a Fourier transformation.

Assuming tlhe sources to be point sources, we will look for an angular separa-

tion. between them, the ratio between the source intensities, and their positions

with respect to each other.

The CoefficiEnt of Coherence for the Case of Binary Sources

Let at the points PI and P2 on the Earth's surface (we shall take it to beI flat) antennas 1 and 2 of an interferometer be set up with a base d (Fig. 1).
At pcint Q in the feeder line, a receiver is hooked in. The intensity of fluc-U tuations arising at iptis (14], p. 507):
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t I

,fluctutin L th inerermeter cutput.

Here. I.,) T-'K) e 3- thZ IUctuariorn Pie Ced up in-

iividuallv by the first and sec.rd intar:rfrometer ontennas; -
=  e is

the c .Ke. effcie.t .. the flucauation c . .. at toints P- and '23: is

....na.e os.-.c to thee :::renc2 e- P e passaze 0f te ,.aves along

zhe feeder fro., the annnnos to the plae wthere the receeCr is conectod.

Expression (1) is good for small shifts across time in the siAnals pickad

up by both antennas and c med at ocint Q, when:

where f.f is the bandwidth of the frequencies picked up.

We shall e:camine first of all a source near the Zencto. Let source be

disposed on a plane with a coordinate system :', -nd let there be a parallel sur-

face A, in which the interfzrometer is disposed (Fia. 2). The distance between the

surfaces is designated R, and we construct on surface A a coordinate system

whose axis is parallel to the axes of %,n, with the zero point lying normal to

o(. Then, according to the Van-Zittert and Zernike th-ecrem ( P. 510):

*.2 e I I- I(e-)J .1

Where <=-, where is the mean wavelength of the noise radiaticn picked up;

is the phase difference in fluc:uations arriving at points P- and P- from the

zero point in the coordinate system .on, equal to "-oP.-oP2 ): I( , , is tht
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whr x! y .: i , 2" =r :h cor:.inaL& -:s ofre pc: :'' ar..2 P -.

in whaz is to w., o:;e shall call the magnitude :V the nucleus of the co-

efficient of coherance. TIe nucleus -' does not depend cn the positioning of

tae interfrometor antennas; it only depends on the projection of the base of the

interferometer antenna, onto the x-axis (with a magnitude of p) and y-axis (with

a manitude of ). ,e shal dispose the point P 1 and P- alon_ the x-axis. Then

,- i -f.- winh '==dA where ) is the angle formed 1_: the direction

:ron -oint 0 onto the abscissa of the point 1,n with the no.mal to the surfaces

Sand A; at the sa-ne time, q=0. Let the coordinates of t',e point sources be res-

pectivel:; and , and their intensities be respecively a and b.

Ue saall oiose the nero coin4 of the coordinate s-Se insuch a way

.... w, a::... Ti. 3). Then, the rojecticn o- > .aa distance

zet en t-he sources cnzo the surfa.ze ;-:0 will be 2,,, and the nucleus is:

. . -:-. . r (a4
CO cos ,,* -i,-_ _. .in Kdv. 4

Fig. 3. On calculating the nucleus of the coefficient of coherence.

The nucleus of the coefficient of coherence w'12, as it is a function of the

electric length <d, describes a picture of field voltage distribution in the in-

terference bands on the surface A, with the interference bands corresponding to

the pair of sources under consideration here, not in terms of their intensities,
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Ci-i.~ Z:s ~S S- n _ c and shifting thie base j-- t- ne reoree

~ :.~ -Li'~ fr: est t..~t. C~U~L i~enucleus

- _ , ecn tn~ E ositi..nini' of the base, it is -C'Sihie to s:tudy the

intcrferota r, zne antenna of T,,hich is always locazed atr zero point of the

co ordinat2 a,-- -. e .3econc. antenia of which s!ifs S-ulr-racting the

elctic--e 'Jx-ax~s from the :!r--. :pci: te ,oordinaze systen,f - interference banis all =-b at]Mn3 m-'.6I

~ -:=. * :eJ :c1a~ o.as c sr~a~ -e!rEns t~zthe 7-.rL~ituc:de
1 L~ cn e i L-

- two .d -c,3si3oe .::Dxlaia th-e o~ctura of znterf:ence bands mnen-

-- : - nEa n 3 7 n easLir nts , I't w ul b 1 e :s s DI~ tc d et er mine r.e a Is

-. s a r.a7. e s2 r s o c xie s a a n '

? : the preser.t tma radiofrequeticy source haS > szudiEd close ta

-- tch. Conclusi.Dns drawm for it are ali1e:xtended to the case .)f anv os-

* r 2-esourze. Th-ey will remain iustifiad if we take the prjtinof the

a:xZo__ar s'zparatijn be twtoe- thE const itunt binary 7izurc-z3 ont-:- tlhe ieatn

Thie Current on the Output of-an' :nterferometer with a Phase Shiftc-r

W.e take iA(Q)=!!(a-b) and T()Na~) her., ex.ression 'I'na be written

in t*-e rorm:
N~'4 .\ * 2 1

%;e note also that:

COS 3,, = - -~ .- e

where '+

The measurement method suggested here is based on a shift in the lobes of

tr-,e interferometer diagram. The methods for this kin,- of shift using2 pha~e shifters

68



_re7r:i-3cctt and Little 5 zas .zell as by ?abr7 Btn almer,

and ;ms . hvu~e inrerc:areters at the prosilnt state -fL the art []

t- -ans' It u fhe jrce cogether wLi:.-. sky proflie, the phase

zh -4-asari\vr.g- from point o on the iarfaze to antennas 1 and

2d r r, a ),WEre:

He :e, is -_'ea.ular vElocity corresponding to the Earth's rotation; 6 is

.. e s_,ui-c i z;o the .:rPgie berween the base and tne east-west line.

n~a; h4 erit is, _ssille to derive the frequency of the output

ijnere L; st: criase si.-e requency.

and expression (5) takes the followina2 formi:

The ciurrant amplitude I, of the frequency 7.is proportional to:

and _:t o1aie -is monndo eans .cf t_)e eqi.ation:

Determining the Angular Separation Between the Sources

In order to determine the angular separation :.it isnecessar-.: t3 kncw the

period of the interference bands on the Earth mentionuad above. In order to find

this period, it is sufficient, by varying the base d, to _,t.ermine the distance

between the pole maxinum and the nearest mnimum. We shall substitute variations
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In t;he reccv r.n.., under cconsid raic. n vere . "-'., -' -s t2. re-

qjnency .
-

., U " -alue ,o th "e I-, t is neces-
~sarv that :

where n is a whole number.

Then, we search for a frequency; l !arer or sm-Jler than "' at which the

power received Zrom the binary source has a 7if:-um -r. is clear that:

ff -m which:

s'here.>=_-

.. ' Iistance d between the antennas must be taakn "c fr hand to he sufficientlv

large, in that at a fixed maximum frequency dispersion between -1 and -2,

the measurement of the determined ninimum angular e-3 tn b tween the sources

will be assured. Th-,us, for a minimum angular separzt'.on f - '= 0 .29 -11:1 rad,5,000
at p=,, * 2.3..=,6 0 0. it is clear that n-. .S :% , -=9,50,

or 2=7,, 0.

Taking mZ>m1 , we get for a mean frequency -: ,-=9 ,030. Consequently,2"-~ I
- ~0.395.

1-.e distance between the interferometer antennas is deter-iined by a fixed

minimum angular separation 2; for the measurement and a frequency dispersion

of f1 and f2 . From expressins (13) and (14), it foilows that:

P

'2 ;. -- ;I

where p is a whole number.

On the other hand, from expression (13), it ftl:,s that:
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r n~sur~n he angular se~parat ion 2 _. between the components of the binary

nit is necessary co know, althoucgh ever. only in an approx imza wayth

cur-,'e f Lmiif _'a:on in the syte "interfaroinr-cr nenarcirwithin the

tre~encyrarna f -- ,in order tj be able to f-*r,- correctly the frecuencies o.'

tne mnaximum _anc miniznum of the picked-uo energy. This curve, naturally, should

inot have sections with Yreat steeoness.

Determininaz the Ratio of the Source intensities

n order t:o fi.nd the relationship of the intensities a an,! b of the sources,

it is sufficient to find the ratio of the field ':olta~e minimum of the interference

bands on, Earth (the field2 voltage proportional to "ab t the field voltage maxi-

MUM (provortional to a-b). For this, it is necessary to know the ratio of the

ampli fi4c ati4on of the syscem.. "antenna-receiver" at the frequencies mentioned above

~and and wiha lzrg7e dispersion of these frequencies, to know also the

relatiornsnin of the_ scuro:e radiation intensizty to the frecuecy at the Derzinent

p frequencies.

We shall denote a correction factor, which takes into account the joint ef-

qI

oiitudes 17 and Ii at the frequencies *Ii and :-2 , ani noting that Il-(a4b)q- and

-a-hfq , wefind;

intensity of the weak source /:

intensity of the strong source 1-7-7

in order to explain which of the sources a and b is the weaker, it is netes-

sarv to determine the sign of the imaginary portion of the nucleus of the ccoherence

* coefficient L.,1; this requires special measurements.

* Below we shall! cite yet one more method for measuring the ratio of source

intensities.

Determining the Mutual ?ositionings of Sources with Difforent intensities

As has already been indicated, for this it is necessary to de:ermine the

sign of the difference a-b; this can be carried out b:- means of elucidating the

relationship between the phase of the current 1., and the observation conditicns.
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>~;me~- A. m,± a0.:r-ad ut wn:J theay all o'ir:h rerc~

o5 tw . ChanneIs conne ted in Darallel to the antennas of an inter frometer Fig.

-), and .. _ fl_ between the 7::rron-.t I- and I-, which must "e zompared a

wll.

2

2 Fig. 4. Diagram of an interferometer
with two channels for determining the
Mutual positionings of sources with

b.tee th iis afferent inteneities.
t_ I -as 

-Me--f

Thus, :hannel can be used f r receiving at freque ncd 4, corresponding to

the maximum of the interference bands, and channel 2 for receiving at frequencies

frequccrrescndtn to of 5inimzm of t- andse Teeni h

The phase shifts between e ficnt U ac cur el.u be t h purpose for
the measurements is to establish the sign zf this shift and to ~ a...n the

sign of a-b. The phase of the lobes in the interferorreter diagram car. vary withn

a frequency :2 on the order of 25-50 1-z. At these frequecies, the phase shifts

of two currents may be measured sufficiently accurately. in this casp, the fol-

lowing method may be suggested. Let the phase shifter in channel i maintain a

frequency 2, and in channel 2 the phase shifter maintain a frequency of 7., ccr-

responding to the displacement of the lobes of the diagram to the opposite s>ie.

For measurements, it is most convenient of all to take the frequency at which CC

d2=--in u. We shall consider further the case corresponaing to a positives

as this takes place for the mean frequency L0 in the numerical example citecd.

For this ca.e:

i2 ,=C[(a-- 5)cos'? .- a-bin:l I

where C is the coefficient of proportionality.

We shall find the phase 'p of the current i 2 according to :he ratio to i..

then:
tg7
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",:;ich 7iocs the~ ?o.sibil i'; of deternini not on1 v the sian of The diff~rearce

a-b, but alsD the ratio 2, -hich in the given instance can be greater than unity

a t >,3).

Supiem=ncarv Remarks

It has been presumed up to the present time that a shift across the time

of two signals combined at point Q is small and satisfies the inequality (2).

This cndition can be disruoted with a translation in the source together with

the sky profile with respect to the base of the interferometer. We shall consider

a base oriented alone the line "east-west," when this kind of translation makes

itself most strcngly felt.

or a sour.:e In the region of culmination:

where 'S is t e an-le formed by the line to the source with the normal to the base

(Flg. ).

In the case under consideration, the following factor is added --a the last

term in expression (1):

--

a factor characterizing the envelope of the interferometer diagram. if the ob-

s;er';aticn zone is restricted by values for the angles 3, at which the envelope

does not fall below half the maximum value, then, taking sin -0$, we get values

for tht corresponding sector of the angles $:

daf

that is, it will depend only on the band of the frequencies picked up and the

lenach of the base.

Using expression (17), it is not difficult to find that:

A ("I-='.2,4 ". -f I! ')." ".

m "rin"
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num angular se.ri- n . . -tciaed within 4t and -cr whic- the inter:erometer
f2-f"

is calculated. 7. , -.. < and -K .1, t . -. I - , :=2', ar.d

at

If the time for finding a source within the limits cf the sector A9 is in-

sufficient for carrying out observations, then the ratio Letween the feeder lengths

leading to point Q should be either periodically or ccntinuaiLy ccrrected.

In conclusion, we should note that the methods suogeste.d hera for measuring

are only sli 4 h:i sansitive to arbitrary variations in :-he phase shifts in the

interferometer antennas, because they are oriented on the -ean frequency -f the

intersecticn of the source by the lobes of the radiation pattern diagram of an

interferometer built together with a phase shifter.
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ZY MZA: CIF A LT:IoD .:PL3YIG PAr IAL WA.:E

D. !. Mircvtskiv, 1. F. Budagyan

In the present work, a new method for solving an analysis problem (a primal
problem in the propagation of waves in nonhomogeneous carrier lines or media)
based on the conception of partial waves is examined; this makes it possible to
determine by means oi a sufficiently uniform method zhe space and reflected par-
tial waves, and as a consequence, the complete field and internal coefficient of
reflection for any arbitrary, nonhomogeneous line or medium. The recurrent rela-

ticnshis derived assure great accuracy in solving 7roblems connected with wave
propagation in a weakly nonbomogeneous system; these problems are usually con-
sidered in short-wave approximations (the Wentzel-Cramers-Brillouin method).
These relaricnships are, however, good also with a shift to calculations for a
system with a sharliv expressed dependence of the parameters on the coordinates,
where normal!y long-wave approximations are usually used (the Born and Kirchhoff
methods).

Introduction

A precise solution to the problem of wave propagation in a nonhomogeneous

system (a line, carrier, or medium) has been found up to the present only for

several principles of variation in the wave numher. :a connection with this,

different approximation methods [l, 2, 3] have -ineJ zreat significance b' tak-

ing account o4 the demands of high frequency signal technology and radio physics.

In solving this problem a start is usually made from the equation j ,=0 [4,

5, 6], which connects only the full field with the Parameters of the medium.

This is explained by the fact that the subdivision of j into two parts, to which,

beginning from these or other particular considerations [7], may be ascribed the

sense of space and reflected waves in a nonhomogeneous medium, is ambiguous :3,
91. The conception of partial waves [10, 11] makes i: possible to formulate re-

quirements that must be satisfied by a partial space wave a and a partial reflec-

ted wave E in a medium.

It is well known that the field outside a homogeneous layer extending from
i<ox~r~<X

o to a is expressed as rve +reiK0R, (xiO), 4=txe a  
, (x;a), where r an,

t are its reflection factor and transmission coefficient, < and < are the wave

numbers for the left and right homogeneous half-space. The partial space wave

a should be transformed into an incident wave as it entz2rs the layer (a=ei < Ox ,
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4 a5 a .fec:., .- ,;1-_ i: 3. )U.i& sJU Lif t:,e codtions

-4e rCi2- : .a varci~ waves _,e- should be taken 'beginning with the

physical sense of the functions of a and i) in the sense of the interior reflec-

R 71 Tlis factor satisfies the corresponding Riccati ecuation:

xi ~ --2ii -x (.,- I -

_n normal manner [12]. lor a layer (zarrier line) with pronounced

'otndaries on its interior, the reflection factor upon input R(O) should be con-

dwit' in output reflection factor r( O) by the relationsh-i:

-ere, :z0) and 29 are the characteristic impedances for the entry plane

(:-D) ane the left-hand homcgenecus half-space. At the layer output, this fac-

tor should be transformed into the Frenel reflection factor for the interface

between two homogeneous media [c(a) and ca]. For a stratum with even input and

ott [3)(0, o(a)=oa], the internal reflection factor should be transformed

at input into a layer reflection factor R(O)=r(<o), and at output, it should be

equal to zero.

Space and reflected partial waves in a nonhomogeneous line (layer, stratum)

satisfy a system of two first order equations [9, 10]:

which connect the wave number s and the normed gradient x of the characteristic

impedance : of the nonhomogeneous line with space a and reflected 5 waves of the

field %:
K tc, I ' S . . . (in ,'=

11

4 -i-.(4),,- .t I71- (in :)")' - (In -Y'1, ."='?- -

The equations (3) derived by means of an approximation of a determined,

smoothly nonhomogenecus stepped line [13], for each j-th jump of which, with a

thickness of d , the field may be represented uniquely in the form .=a .whrea.A~ i < 4 x  
jBj iJx."

where a.A e and Here, the amplitude coefficients A. and B2 2 2 . 2'

as well as the wave number <. and the characteristic impedance 2. are constants.
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S.Cot:Ly7 nonno nogeneous line (using a passa-ge to zh i-mit cf d.-2) 'ea,4s to

a z~er intezral equation, whose 2ffferentiaLJicn: with r_-Srect tc :be co-ord~

natE. taking iLnto account the internal conditions of equaticns (13) and (14) in

.0 ~the cited work [141 yields equation (3) in the present article. In thie work

ci*ted [9] the equations 1under (3) wer-e derived earlier by means of another

meth7od.

in deziving the system (3), there was no assumption as to --he slowness of

variation in the features <(x) and 0a(x) in the medium alon2 the coordinate x,

and as a consequence, there are also no foundations in the solution ;for :nhis

systEm to introduce the small variable 5, writing thus, for example (r9], p. 182",

the Solution fo;r the wave propagat4in problem in a nonnomogeneous medium t'-.usly:

whee ~anu are functions corresponding approxIMatelly to the space and re-

f'ected waves x~ and ~,but not derived with the help of system vr) ut from t~

equaticn for the full field

follows F151 thtste(3 has a naturalsouinwhcmabefndymas

of series apoiton.The series of the functions derived for this converges

smoothly in the fixed interval, and as a consequence, the boundary functions are

continuous. it is essential that the solution to system (3), generated by means

of the method cited, does not depend on the choice of a zero approximation., a nc

for that reason, for both weakly nonhomogeneous media, as well as for strongly

nonhomogeneous media, it is possible to apply the same calculazional scheme.

For this, the solutions normally found by, various methods (r16], pp. 63-103)

(sotwave and long wave approximations) will ble derived by means of a complete ly

uniform method. A certain increase in the volume of calculations, caused by the

use of a zero approximation which is nonoptimal for one or another particular

problem, is compensated for here by taking into account the ra pid working times

of computers in applications of one or another computation program for the vari-

cus problems in the theory of wave propagaticn.

Cases when the functic:ns an'-- 3.>i re not con-

tinuous in the assigned intsarval 4=lrX'), eqtofurtner study ("3j p. Z34).



...ae . rei i.r 17, in which a method for solving .the prob'lem ;f

wave pr ~aaion is developed, and which is based on the investigation of ampli-

. r~iacic::ships in ibhe solution of the first order equation:

a artia.. sac300 wave a.

The Fundamental aecurrent Relationships

In the selection of a zero approximation i0 (x) and B0 (x) in any variant of

the problem, it is zonvenient to begin with a solution for a quite weakly non-

homrgeneous carrier line (Y. is very small), computing for this the number of

approximations corresponding to the degree of nonhomogeneity in the line or layer

under coasideration, that is, the more approximations there are, the greater will

be the nonhomogeneity cf the line. The base equations for finding a0(x) and S0 (x)

are first order approximative differential equations, but they are not intercon-

nected:

Z ( L), -i v(].. . = 0, .U 0-- . - - = ,

derived from system (3) by equating the right-hand portions of the equations to

zero.

7he solution for equations (5) for a semi-infinite layer, whose entry plane

is disposed at x=O, leads to the following expressions:

2, =C e t -xi . dx] =, (0)K (.V!,ex P~i d

kOa) K (x6 exp il dx]

wghere:

K X) =- (0~)C K- (W

The sum of these waves, found at the zero approximation, has the form:

2,OlX - ) = K (x 0) . o(O)e PO -Ol e

We should note that this result overlaps with the expression for the field

in a nonhomogeneous medium, found ([9], p. 174) by the VKB [expansion unknown]

method on the basis of the equation for the complete field IP with the absence of
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corresponding expressions in the work cited i It is possible to demonstrate

[19] that with .=O, the following rclaionship holds for subsequent approxima-

tions:

For this reason, the solution of two independent equations for the n-th

approximation:

,ay be conveniently represented at n=l thusly:

VY 7 .A IXI

-)( ,z .i \ S *ti.2 : . __U l X~~, .. I '

We shall introduce for brevity sake the following notational symbols:

* ,

J(X) --- . ' N1  e dx),e

J-~~ Ixj (xi

Then, the recurrent relationships at n=2 take the fcrm:

1(x) = (D_(Al tO r --- J xxJ ! - , (_) 1 I

(x) (- (x) ,0)I -- 'l" -x-'

For the third approximation (n-3), we get respective!-/:
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, i ' - )--,.'. r'" l . . -. -. .. r'

It is not difficult :o find by induction expressions for the subsequent

a-)7rox imation as well:

- -) . ... . v J ,")7 .IJ.
In t'is wa-, we shall note the recurrent formulas for positive and dd ap-

p ro xi i:.i t

D,.,A, =t) 1-J_( J -( -. -

J_ 1J_ cX,) * _: , v. , - P-I
./ {xJx a t~ ) . J_ xJ ,) J_ .,

-- _ - t

* . . X 0) V- (.V) - J , . ._ .X ,. I.,,

-- . .- Jtx d (x,) . J_ - 2,,. ;

Ih,--, X = + _ x 2- k:) V01 .1 - J_ ix J_(x)-- . -Y (.j J_1 x-h) •
- . *-J...(X)( 1  F..'. ~ . .. ! . 1 + .i ,_ * ] - I, ,0) SF..- (x) - _ (.v') J+~ (-) d_..X,)-

. . x) J ( .) ... .. .(Xr,jJ:, V) ) @ _ .,) 0 i _ (xx_ r, - I . _ .' ., x') J_ (.,) ./

The internal reflection factor R=3 - , and consequently the input reflection

factor r(Ko) of a nonhomogeneous line (layer) connected with it by expression

(2), is determined in the following manner.

In using recurrent formulas that describe partial waves, it is necessary

above all to determine the kinds of approximations for the partial waves that

express the desired internal reflection factor Rn (at the n-th approximation)

in the relation. With this end in mind, we use the Riccati equation (1) and

the linear system (3). We rewrite equation (1) in the form:

R'- . - (2 ic IC- Y R) R =0

and we shall use the first equation in system (3), which, taking into account
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:hat a: :in,3 t tbe &trinati .:.- ay, ' be represented in :he f D!!i wing

form: P-

Then:

R' 7-R'i3a)

We shall start from the determined space wave cL found at the n-th approxi-
n

marion, writing equation (13a) with respect to Rn in the following manner:

Assuming chat in this equation R we shall find the nuaer of the
1-th successive approximation assuring the feasibility of the first equation in

the base-line linear system (3), which earlier was represented in the form of

equation (9). Differentiating the expression for Rn, we gec:

We shall introduce this expression into equation (13a). For this, 2'+ .

(X+iK)=Yx. Comparing the equation just derived with the second equation in
n

system (9), we imediately establish that j~n+l.

In this way, the n-th approximation for the internal reflection factor is

Fn c 1, that is, this is the relation of the reflected wave in the succes-n "n+l n
sive approximation to the space wave taken in the foregoing approximation; this
situation has a definite physical sense. At the same time, function Rn satisfies

the equation derived from equation (13b) by means of substituting into it the

expression a I -" which is determined from the first equation in system (9):n n'

R,-, 2i PcR, ) = 09 (14)

which with anln nl is transformed into equation (1).

A direct consideration of the process of wave propagation makes it possible /

to establish the fact that the optimal sequentiality of relations of partial

waves is the series including even numbered approximations for the space

wave, that is, a2n, n=0,1,2... In fact, the space wave at the zero approximation

generates a reflected wave (in the first approximation). This process at any

arbitrary point within the nonhomogeneous medium is characterized by an internal

reflection factor R,-t 1i In its turn, the wave E, being reflected in its
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7,venent as a r vave, creates another space wave a2, which then generates

a reflected wave 63. In this way, in fact, the internal reflection factor at

the second approximation is Rli=3a2-1 . The process described in this way is

fully characterized by system (9).

Taking into account what has been analyzed above, as well as the tradition

sponsored by applications of the VKB method, in which the zero approximation (an

approximation of geometric optics) gives two waves which do not interact between

each other [R0 (x)-O), we shall use the following notation in what is to follow

for successive approximations of the internal reflection factor:

R,= , R.. 3  , R 3= , - -

Using the recurrent formulas (10) and (12), we write:

R,l(x)= O, R1(_V = Gtx fR0)---W]tx,
R,(x) = 0 (x) GR [1.0)1- (J-(X01 + [J-(. - .x)-,

These formulas bring the reflection factor R() at any instantaneous point

x within a nonhomogeneous line into conformance with the exact value of the in-

ternal reflection factor R(O) on the entry plane for the same line. They are

used in problems with an assigned input reflection factor (and synthesis problems),

if the relations in (3) are justified, establishing that R(O)-R1(O), where

j=Ol,2...

If we assume an assigned R(a), that is, the internal reflection factor at

the output of the line, then it is necessary, in the recurrent expressions

J (x); J (x)J-(xl):... for the partial waves entering into the formulas for
* * +

the internal reflection factor, to vary the integration limits (instead of 0-x,

use x-a). For this, formulas (16a) must be written in the following form:

Ro(x) = O, R1 (x) =Q(x) (R(a)-I. lx)],

< [ 1-- + x) -(0]-- (a [ (.~l- '(16b)

keeping in mind that expressions (8) are transformed in the following manner: /7

2.o(a) = (a) = (a)= . 2.= (a)= 2(Q).
00 o(a) = , (a)= P..(a) P .. = (a) ( a).
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a .- Ir . . -- ---

?iere, " foiio'ing symbolic notaticns are used:

a . 2

~~~~~x e, x 22 *,

/ o ,x - e ~' dx, (.X1)e A, dX2.

In solving problems connected with determining a reflection factor according

to a given principle of variation in the characteristic wave impedance p=p(x)

along the coordinate x, two cases are usually encountered:

1. A nonhomogeneous line (layer, stratum), extending from x=O to x-a,

matched with an input hcmogeneous line, that is, one that has no reflections,

making it necessary to find R(x) according to a fixed or assigned p(x). For
this case, it is necessary, once having defined the desired reflection factor

and terms of R (x), to use the following recurrent relations coming out of for-n

mulas (16a) with R(O)=O, and which remain good for the entry plane of the non-

homogeneous line as well (that is, at x-a):

R, (. (v) J -(x (J-f - (J, ( 17)

P, -~'I . x (,X J_ -.<- "C )a
.J . X) J- (XI.1-  J (X) . kx,) -- (X. J '

2. A nonhomogeneous line matched with a homogeneous, input line, that is,

at the line output there are no jumps in the characteristic impedances [z(a)=oa,

where za characterizes the output line], making it necessary to find the R n(0)

connected with the input reflection factor r of formula (2) according to the as-

signed o-c(x). Taking x-0 from expression (16b), we get for this case [R(a)-0]:

R, (0! Q -- ) 1-)/ (0), (20)

RI(0) - I ()-l (~ (~ _x)[ -l. 0 -{~ ', (21)

R., (0) -" - Q (0) f/- (0) + 1_(-' ! (x) I_ (x,) -.... (0) 1-x I_ (x')

< / -V1) 1 (x3 )J I I - 1+ (0) /- (x) - (0) / W (x) 1- (xI)/_ (./)_ - . (22)

In a similar manner, it is not difficult to derive from expressions (16a) and

(16b) the recurrent relations for other variants of the problem of wave propagation
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as well, in .ich neither R(0) nor R(a) is equal to zero. We shall consider an7

example which clarifies the possibilities represented by using the formulas sug-

gested above for the solution of problems in the analysis and synthesis of a

nonhomogeneous line (layer, stratum). The generally accepted method [20, 21] for

the approximative solution to these kinds of problems reduces to the integration

of equation R' (x)+2iK(x)Rx(x)-×(x)=O, derived from the linearization of equation

(1). This method leads to the following result:

R, (.) e (A-R I le 12•

It is not difficult to convince oneself that (x) is here in fact the first

expression from the series of relations for partial waves given by formulas (15),

as R (x)=:2(x)a0 -(x), where pl(.r) is determined by the second equation in system

(10), and a0(x) is determined by the first equation in system (6). At the same

time, the equation R(0)=e(0)ot-'(0) must also be taken account of. In this way,

the first approximation for the reflected wave 3i(x) is the product of the partial

space wave at the zero approximation a0(x) by the internal reflection factor Rn(x),

found from the linearized Riccati equation.

By means of manual computation, which necessitates restricting to a small

number of approximations (n), when the following conditions of the Picard theorem

are a fortiori not fulfilled:

it is advisable and expedient, without using the symmetrical form of the expres-

sijns for the partial waves, to go to the optimal series for them. In accordance

with formula (14), the following waves should be chosen for this:

which are determined by the expressions (6), (11), ... and (10), (12), ... , and

the full field is determined as:

,"0-- 2, , ' " ~+

which for 'o0 and WI, is in accordance with the position of (1].

All that has been analyzed above holds for a change from a finite, nonhomo-

geneous line to an infinite, nonhomogeneous line (medium). This change brings
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with it the necessity only for a corresponding substitution of the limits on

all the integral expressions in the derived recurrent formulas.

The Determination of the Internal and Input Reflection Factors /7

We shall consider a geometrically nonhomogeneous, coaxial line with a homo-

geneous filler, for which 3K(x)/3x=O, and the characteristic impedance is o(x)=

I(x)/E:(x)] 2. The driving capacitance and inductance satisfy the following rela-

tions: £(x)=KK O(x), (X)=Koi'-(x), and for this reason, introducing the normed

function for the characteristic impedance P(x)--D(x/)- (0) to the line input, it

is possible in accordance with formulas (6), (10), and (11), to write the follow-

ing:

0(x) =P(x)e' " (0), P(x) = P(x)e-'P (0),

C(x) = P x)e 2 [() -- A (0'X.) &I

[ 1lx) P x~ - P (0)-1(0) '.(x,) e ' x,  ,

dxz
X Vt

- (0)j (r,) e~ dx,
X Jt

= p(x)e-  
'~ ) x 1 - - X(.)ei '

c dx1  (x!)e-12 dxj
V 0

.- (0) (~x,) e " dxl,

where the normed characteristic impedance gradient x is expressed by formula (.).

We shall limit ourselves to a case where a section of nonhomogeneous line

is matched on its output side, that is, p(a)-s a  For this, R(a)-0 and it is

necessary to determine, according to the given dependency relationship o-c(x),

0sxa, the input reflection factor r connected with the internal reflection fac-

tor for input R(KO +O),by means of relation (2). Formulas (20), (21), and (22)

are good also for this case, with the exception that the symbolic notation used

in them now has the following form:

1. (0) == A'(x) e L: a z dx, QO9) = e
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For the sake of ease in comparing the method presented here with the exact

solution for this problem, as well as with the normally used approximation solu-

tion [9], we shall choose the following principle of variation in the character-

istic impedance of the nonhomogeneous line:

;, 0) . e . ..,

For the selected principle .=O, and as a consequence, it is possible to re-

write formula (1) in the form:

R'(x) -- 2i :R., - p!R (.r)- 1[ =

We find the exact solution for this equation by substituting into it the
x

expression u(x)=exp[pJR(y)dy]. At the same time, it is transformed into a linear
0

equation with constant coefficients:

u" (x) 2 i 'u . - P ( = 0.

Insofar as the solution to this equation has, as is well known, the follow-

ing form:

utx'Clexp [-ix .(- K - p -- C.exp -i.- .-

the exact solution to equation (28) may be represented in the form:

R(x) PC i I K- p2G, G-(F-D)F- D
P P

F=expi2 -p..D - -"

The constant of integration D is determined from the boundary .ondition

R(a)=0:

D [ l[(] 2eNpia t.-p

For a semi-infinite, nonhomogeneous line, D-0. Introducing the value found

for D into expression (29), we can determine the desired exact expression:

R (0) = x -- I .'-- - -D) 0 - D)- =

p 0

=ipe 12 VW3'-vR-j :,K-- 1 '-- I -PL-

The module of this reflection factor R(O) is expressed as:
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T'ie relations determined by the recurrent formulas (20)-(22), taking into /7

account C2 ), have the following form in this case:

P, 0)= - * I -1"P- . "x e-, q =

R, .... e e ',X ::a
a

0i

I, (a- X, e-Px'dx, 2-p- e a - xj

e --- fj x

e--. ... d, iqe_- 2e_-2ixae_)j[ I -- e -

5,j()=iq e- -- 2qa ' e_ - iae _ q q -' a _ - ,a

7.r 'Rn (0), we get respectively:

(0)! -AB-' S, 132.

R.(01) = AB - ' 1 - L 1-  (33)

j 3 , 0 : : , -- { 1 [ L -- A 4 4 ( 8 8 3 ) - ; V 2 1 -

R, 10): = L4- I 4 32S-331L - A4 ., 8&)- ; (S' S - 31%,

Here:

A = ap, B =K, S =sinB, C=cosB,
V=S-BC. L=C -41S(22)-', M- =42CI2B)- -

_S 'I -A 2B )-;

The effectiveness of the recurrent formulas may be assessed by means of

comparing the calculation results according to the recurrent and the exact for-

mulas. For this comparison, it is convenient to use two methodologies somewhat

differing from each other and conditioned by the special features of the recur-

rent formulas derived. In the first instance, the parameter pa, the product of

the coefficient p characterizing, in accordance with formula (27), the velocity

in the variation of the characteristic impedLance P of the nonhomogeneous line

along the coordinate x must be fixed, as well as the length a of the section of

nonhomogeneous line. In the second instance, the parameter pe must be fixed;
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it enters both into the exact formu!a (31), as well as into formulas (32)-(34),

which contain the factor U-l=pK-i, characterizing the degree of ncnhomogeneity

of the line.

The first instance corresponds to the conditions under which variations in

the length a of the nonhomogeneous section of the line lead automatically to a

corresponding change in the coefficient p. Thus, a successive increase in length,

that is, a transition from a, to a2, a3, etc., where aI<az<a3<..., occasions the

necessity for considering nonhomogeneous sections of lines with the coefficients

pl, P2, p3, ... , where Pl>P2>P3>..., with plal=p2a 2=.. .=const. Similar condi-

tions are encountered frequently in practice, when the section of nonhomogeneous

line is disposed between two homogeneous portions with fixed characteristic im-

pedances .and pa In Fig. la, two sections with lengths al and a2 are pictured

together with corresponding curves characterizing the velocity of the variation

in the characteristic impedance in the nonhomogeneous portion.

Fig. 1. Variation of characteris-

tic impedance in a nonhomogeneous

portion of line for the cases when:
(a) pjai~p2 a 2 const.

i- r (b) Pl9-=P2X2
- = const.

bJA

The frequency relationship IR(0)1-f(Ka) is given in Fig. 2 by the solid

line with pa-0.5. Here, the broken line plots the results of calculations
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... Fig. 2. Comparison of results-f calculations according to the
exact and recurrent formulas for
the relationship between the in-
ternal reflection factor at input

........ and the electrical length of at ______-- - nonhcrnogeneous line for the case

according to the recurrent formula (32), that is, at the first approximation.

It is easy to see that only where Ka>l, the first approximation begins to give

high values for the module of the internal reflection factor.

The second instance, when the parameter px-' is fixed, corresponds to con- 7
-I

ditions under .hich a variation in the wavelength (frequency) occasions a cor-

responding variation in the coefficient p. This last is necessary in order to

retain as constant the jump in the characteristic impedances (:0 and a) in the

semi-infinite, homogeneous lines. At the same time, the electrical length (but

not the geometricil length) of the nonhomogeneous section remains invariant across

any arbitrary wave or frequency range. In this way, the relation p- charac-

terizes the degree of nonhomogeneity of the line, that is, the magnitude of the

jump in characteristic impedances at a distance equal to the wavelength. A

diagram showing the physical sense of the variation in the parameter p -K is

shown in Fig. lb. Here, PI1 '=P2X2 1=cl, Kla1=P2a2=c2, with c: and c2 being

constants.

We shall compare the computation results arrived at by the recurrent formula,

not only with the exact results, but also with the computations carried out with

the help of other variants of the method of successive approximations. Several

modifications to this method are well known. The most exact is taken to be the

second variant of the two described in the cited work [9] (pp. 194-203). This

variant reduces in fact to the solution of the Riccatl equation by means of suc-

cessive approximations. As a result, it is possible to derive the following ex-

pressions (see the Supplement):

90



R', = - u; " , . (),

9:,0(x-- e I' R --(x.), e  dX. (3t)

Taking into account that x(x)=p, in accordance with formulas (35) and (38),

we may write:

., e- I .

= in 2Ka I'l -- _iSin2 xa . 4,

L 2 B 2 2 - ,

SThe second I-pproximation acccrdin-, to the method described in work [9] will

consequently have the following form:

.B ,r .B - I _, -- n 2 ! - i

The calculation results arrived at by the exact formula (31) and the recur- /

rent formulas (32), (33), and (34), as well as according to formula (41) are shown

in Figs. 3 and 4 for the two cases: (a) a smoothly nonhomogeneous stratum (pK-I=

=0.5), and (b) a stratum with an abrupt change in features across its thickness

(pK-1=0.8). The data used in constructing these curves are cited in the table.

: Fig. 3. Comparison of cal-
_ , culation results for R(o) i

_ .. according to the exact for-
- " mula, recurrent formulas,

-- and according to the method
. ..given in work [9] focr the case

pK 1-0.5.IY a -- ; ? , ,_ , ¥ ¢_

$4
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Fig. 4. -omarison of calculation Fig. 5. Relationship of normed charac-

results f or 1R(0)i according to the teristic impedance for nonhomogeneous

exact formula, recurrent formulas, line and the "electric coordinate" Kx

and the method given in work (9] for the cases.
for the case pX-1=0.8, .p--5 21 "x-1-0.3

I Table

26 -

Px) expi--.O 17

The exact solution is shown in the figures as the solid line, the first

approximation by the line made up of dots and bar sections, the second approxi-

mation by means of he barred line, and the third approximation by means of the

line with smaller bars. The point curve shows data for comparison of the calcula-

tion results according to formula (41). From an analysis of the curves, it emerges

that at pK-_-0.5, the point curve differs only slightly from the curve with large

bar sections describing the second approximation for R2(0) and plotted according

to formula (33). The substantial distortion is noted only in the area of the

first minimum (near the point ca-3.6). However, with a transition to the less

smooth line (pK-1-0.8), the correspondence noted above is completely disrupted.
Although the abscissas of the first minimums of the point and the large bar curves

almost coincide, the magnitudes for these minimums are substantially different,
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while it is not only the nature of the point curve [plotted according to formula

(41)] that differs significantly from the exact curve, but at Kaz2.5 and Ka>4.2,

the module of the reflection factor 1R2 (0) I becomes greater than unity. This

contradicts the law of the conservation of energy. At the same time, the maxi-

mums and the minimums of the curves plotted according to formulas (32)-(34) for

various approximations, overlap according to their magnitudes with corresponding

extrema of the point curve. The shape of the approximation curves, beginning

with the first approximation, is close in form to the point curve and differs

from it practically only in terms of the period of oscillation T(Ka). With a

transition from the first approximation to the second, and further to the third

approximation, the period of oscillation of the curves goes in a monotone fashion

to the period of oscillation of the point curve [Tl(xa)=3.2Ka; T2(6a)-3.gca;

T 3(oa)=4.5Sa], and then as TTO,H(Ka)=
5 .2xa.

Fig. 5 shows the corresponding graphs (see the table) characterizing the

relationship between the normed characteristic impedance L of a nonhomogeneous

line and the argument KX for the two cases under consideration (weakly and

strongly nonhomogeneous lines).

Conclusions

The effectiveness of the recurrent formulas derived here is explained by

the following facts.

The base equations (3) for the method suggested here constitute a linear

system of the first degree, and they determine the partial waves a and a, the

full field *-a+$, the internal reflection factor R-u "a-, and with the help of

(2), the input reflection factor r.. It follows from the linearity of the system,

as was noted earlier, that its solution, found by means of the Picard method,

naturally converges uniformly to the boundary functions (a n -a, 8n -8), not depend-

ent on the zero approximation chosen (a0, %) and the initial conditions [(O),

0(0), or a(a), $(a)]. The solution for Rn of the exact equation (14) tends toward
the internal reflection factor R, if the function $n has a limit, and insofar I.
as the latter is always fulfilled at i#0 or x-Ow, then the method for determining

(from the recurrent formulas suggested) Rn also possesses the advantages noted.
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The method used in work [9] converges to a direct solution for the equation

R'n+2iAF, zn'l-R- ) by means of the Picard method, which is required in carrying
n n

out the ancillary investigations (see [15], pp. 233-258, 263-276, [22], pp. 23-

27).

Recurrent formulas are characterized by rapid convergence, which is main-

tained with the transition to strongly nonhomogeneous lines (media) with large

, as well as with a module of the reflection factor JRni close to unity; this is

confirmed by the examples that were worked through, and then confirmed also in

the fact that the method in [9] assures a sufficiently rapid convergence only

if x is small, aid JRnj 2«l. This latter holds only for a weakly nonhomogeneous

medium (see [9], p. 200) and for a small jump in parameters or variables at the

output of a nonhomogeneous stratum.

As has been demonstrated, the internal reflection factor R is a limit, toward

which the series Rn n+''n_ tends. At the same time, in finding Rn by means of

the Picard method for solving equation (1), it is assumed that R is a boundary

function for the second series.

It should be noted that with any arbitrary x, for the purposes of unifying

the program, it is convenient to start from the zero approximation derived assum-

ing Y to be small. This makes it possible to substitute calculation relations

differing significantly from each other (VKB, Born, Kirchhoff, et al.) in short

wave and long wave approximations by a system of unique recurrent formulas. This

feasibility, noted above, is explained by the advantages brought about by the

transition from considerations of an equation for the full field p"+ i$-0 to a

consideration of equations for a partial space wave a and a partial reflected

wave 8.

In conclusion, we note that with the help of recurrent formulas, it is pos-

sible to calculate not only nonhomogeneous lines and media both with electromag-

netic losses, as well as without losses, but also nonhomogeneous systems that do

not allow for wave propagation [17).
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SUPPLEMENT

Solution of the Riccatti Equation by Means of the Method of Successive
Approximat ions

We transfer the quadratic member of the Riccatti equation (1) into the

right-hand member:

p'(, - (x) R (x) = -. (x) [I - R (x)]

and rewrite the equation, in accordance with formula (17.30) in work [9], in

the form:
(C, jN Xi , I2 .

dX =xR. )e '.(x)[l --Re-x)I e *(J')

We integrate expression (1*) within the limits x to and use the boundary

condition limR(x)=O. Restricting ourselves to weakly nonhomogeneous lines, we

use the method of successive approximations (see [9], p. 197 and 200), taking the

internal reflection factor to be small (that is, R12 <<l). The zero approxima-

tion Ro(x)=O is then for successive approximations ([9], formula (17.38)]:

-- K t2, d.rdx,

( .R - e( x , e X v 1 . -)

For convenience in comparing the calculation results by means of this

method with the calculations according to the recurrent formulas in the article

for the case under consideration of a nonhomogeneous line matched at its output

(x-a), it is necessary to integrate expression (1*) not over x to , but over

x to a, and to use the boundary condition R(a)-O:

-- i 2 ,(. x,) 4. 2 K (r ' dx,

R,,(.O --- e. (x,) I- _ (xi)1 e .Ix. (31)
z

In accordance with [9] (p. 204), we take xo-0 , that is, we presume that an

arbitrary observation point is located on the entry plane. Then, instead of ex-

pression (3*), we have:

R,(r) -e x,(x,) 1 -R i,. e
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In work (91 (p. 200), the internal reflEction factor was taken at the input

to the nonhomogeneous line (x=0), that is, R (0), which, in the absence of an
jump in characteristic impedances at x-0 when p(O)-p 0 , will in accordance with

(2) be equal to the input reflection factor r. At the same time, from expression

(4*), we have: X,
a i 2 ." tx,) dz,

.f ( ,) [( ) ,

In the present work, it was a line with homogeneous filler [K'(x)=O] that

was under consideration. For this reason, from formula (4*) and (5*), we get:

R, el) " -'"" (,[ _ ) dx,, (60)
x

R (o) = - (x, rr -- Rx (fL)] e' :" dx, . (7 )

0

The computational formulas (48), (49), (50), and (51) are derived directly

from (6*) and (7*). At the same time, in accordance with the explanation after

formula (13b), it was accepted, as was done in work 19), that the internal reflec-

tion factor at the zero approximation1 is equal to zero, that is, that R0(x)=O.

1The approximation in geometrical optics that takes into consideration two waves
not interacting between themselves.
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ON O';E 11ThOD FOR SOLVING EXTERIOR PROELE!S IN ELECTRODYNAMICS

M. B. Zakson

A method for solving first and second boundary problems in electrodynamics,
based on the application of single component Hertz vectors (Bromvich functions),
is presented. The solution to the primal problems is demonstrated on the example
of calculating several characteristics of planar antennas, and conversely, on
the example of synthesizing linear antennas.

4 Introduction

As is well known [1, 2, 3, 4], in curvilinear systems with coordinates ,

n, , the Lamd coefficients which satisfy the Bromvich conditions are:

the electromagnetic pole outside the regions occupied by the sources may be taken

in the form of a superposition of electrical (TM) and magnetic (TE) waves [Trans-

lator's note: It is possible that the author transposed the symbols "TM" and

"TE"]. These waves are completely determined by appropriate single component
Hertz vectors, scalar Bromvich functions.

As has been demonstrated, only two kinds of coordinate systems satisfy the

conditions mentioned here: generalized cylindrical coordinate systems and gener-

alized spherical coordinate systems. The Lami coefficients of these kinds of

systems can be taken in the form: h EM(C)hi(&,n); h,=M( )h2( ,n). Despite this

restriction, the Bromvich functions have found application in solving a series of

important problems in electrodynamics.

In the present work, a method for determining, according to assigned sources,

the electromagnetic field in the form of a superposition of TM and TE waves is

presented, and in addition, several possibilities for solving exterior problems

in electrodynamics for this case are demonstrated.

Formulating the Problem. Baseline Formulas

We shall search for an electromagnetic field of fixed sources in the exterior
V Lregion Pe, limited within by the surface, C-1, and by one or more surfaces s,
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determined by equations of the form f( ,n)=O. At the same time, we assume /2

that in the case one of the following two conditions is realized:

E 0, I)
or:

H11-. I

Sources for an electromagnetic field are found in the region restricted by
L

the surfaces si and = . They consist of the steady volume currents J, as well

as of sources disposed along the surface si: in the case of condition (I), tan-

gential components of the vector E, and in the case of condition (II), tangential

components of the vector E.

In this way, condition (I) corresponds to the first boundary problem in elec-

trodynamics, and condition (II) to the second.

In the region Ve, the Bromvich functions may be taken in the following form

(the time dependency is expressed as e"t

A"
4=0(1V~~~ ~~ ,,' ,,, iq'2"B €,' G)

where An and Bn are complex amplitudes of the respective electric and magnetic

waves, and the functions *n and qn satisfy the well-known equations in the work

cited [2].

The boundary conditions for the functions 'n(&,ri) in the case of conditions

(I) are:

0" ' , = O, )
an I

and in the case of conditions (II):

* 1, = 0; 0. (3)
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For determining the amplitudes An and Bn, we shall apply a method similar
to the one described in work [5], which is a modification of the method of Ya. N.

Fel'd [6].

The sought for amplitudes are expressed as: /8

j eI dv- le. h,, ds

4 (I) -=i

•~ s;

- . - " lh -
h z  

' 'hm

;e(1  dt; - jo e )ds -

. J ev
11 a' •W i

Bill
U •: -tll I ' I2

i ' ' an h, , a

where Js is the surface current density,
-ss

e, h-- are voltage vectors of the auxiliary field in the regions

Ve and vi excited at infinity and satisfying the boundary

conditions I) or (II) on the surfaces s and si and the

Wronskian:

d q: (_) d q , (1 )

In the case M(;)ml (generalized cylindrical coordinate system), the expres-

sions for A. I) and Bn (I) are converted into the calculational formulas for the

excitation of normal waveguides with ideally conducting walls (51, and the ex-

pressions for An(II) and Bn(II) are converted into the formulas for the excita-

tion of waveguides with walls possessing infinite permeance.

At M(W)- (generalized spherical coordinate system), the expressions derived

can be applied in the theory of antennas. These relationships may be directly

employed for solving primal and inverse problems in electrodynamics.
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Applications of the Relationships Derived in the Theory of Antennas

The results derived may be applied both in the general theory of antennas,

as well as in calculating characteristics of several types of radiating devices.

The representation of an electromagnetic field of an antenna in the form of

the superposition of TE and Th waves creates in a series of cases additional pos-

sibilities for investigations, calculations, and the physical treatment of pheno- /8

mena in the theory of antennas.

We shall examine the field of a planar antenna disposed within the limits of
La sphere with a radius 2, whose center is the zero point of the spherical coordi-

nate system r, 0, . It is apparent that the electromagnetic field of diffraction

antennas in the form of apertures of any arbitrary shape in an infinite, ideally

conducting plane with a fixed field E satisfies condition (I), and that condition

(II) is met by a field of infinitely thin, planar continuous and discrete radia-

tors with a fixed current density J." The section of the plane occupied by the

antenna aperture is the surface s. in this given case.

In a spherical coordinate system, the Bromvich functions have the form:

IAr. H2, A,', H : (,er) P 
" (cosHU3.""

- 12%) I 'YV.-- H ' tb7)(~s6)

-7r= - --

Denoting m -

we derive the following expressions for the Bromvich functions in a further zone:

-0= - - (ISO n

The amplitudes Alm and Blm may be calculated according to (4), after which

the Bromvich functions may be found, and then consequently, both in the further
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zone [see expression (6)], as well as in the near zone [according to formula

(5)].

The expressions derived in this way make it possible also to calculate the

full radiating power:

P. - 2k2 tI7 U(~L I A,40 12 JB. 1 2

. I- I B1--

At the same time, it is necessary to take into account that A(1)-O and
10-

10

We shall examine in further detail linear antennas. We shall analyze the

case of an infinitely thin wire antenna of length L, disposed along the z-axis, /8

with current 1(z). Its center is disposed as the center of a spherical coordinate

system. In this case, m=O and B( 0.

The magnetic field for these kinds of antennas in the far zone may be repre-

sented in the form: --

The amplitudes of the electric wave types:

L
2
t!(tz)ce. (ztd:

L

A. 21! 2, 3 . . ,

where:

I (zi1 21 (1I) I/e l _

• g : . Z2 , z _

21 itt (Z) I~ . 1(_ ] Z 2 -l kI z ' J: + '.(k z,)

the value of the z-th component of the electric field vector of the wave TMI10

along the z-axis.

In this way:
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- -.- I

.4, - 1577 ( 11:

In the case of an even current distribution [symmetrical antenna with cur-

rent I(z)=I(-z)], only odd waves l=2 q+l remain, and the expression for the ampli-

tudes takes the form:

J

'! ~A,4_; 60.. [2q 3 , it"1 ) ' --

Aq~ ~o~(2 -~~k iz) . Jr

If the antenna consists of N discrete radiators (dipole) of length dL with

currents In, disposed at the points zn, then the amplitudes are:
J (k,.

•~ ~~ z1 1 -1-t2-' I) " .

Al tk:,[ "5 )~' )N -7

where p, = IndL.

With a symmetrical array and even N: /9

.-._ ;= 60 -[q-

We shall examine briefly the problem of the number of wave types that must

be taken into account in the calculation. As was shown above, a radiator p dis-

posed at point z excites an l-th wave type with the amplitude:

I i kz)

.4 - 15 .' ! 2 -v- I) - h.

I :) -12

If kz-a(l+2) (O<a<), then in accordance with [7], we get:

.41 : -- p,1 -3

where =

It is obvious that at l>-kz, with an increase in the index 1, the wave
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amplitude abruptly decreases. In this way, in addition to the wave types with

indices less than kz, there are practically sufficient restrictions in terms of

only a few wave types having indices greater than kz.

Consequently, if we take into consideration a linear antenna of length L

whose center is disposed at point z-O, then, as a rule, it is possible to restrict

oneself to wave types with amplitudes whose indices are smaller than 1+(2 to 4).

An exception involves cases with superdirective antennas ("small-dimension anten-

nas"), where it is necessary to consider waves of higher types with larger indices.

The high directionality in these kinds of antennas is caused by the excitation of

these kinds of waves. In order to derive the necessary amplitudes of the higher

wave types, the value of the current I (or p) in these kinds of antennas, as fol-

lows from formula (13), must be sharply increased in comparison with antennas of

normal dimensions. However, the necessity of observing the required relationship

between amplitudes of all existing wave types (including also low wave types)

leads to a feature characteristic for these kinds of antennas of variable-phase

current distribution along the antenna and supplementary increases in the current

amplitudes.

The Synthesis and Design of Linear Antennas

As was mentioned above, the relationships derived may be applied in solutions

for inverse problems in electrodynamics, that is, a determination of a principle

of source distribution according to assigned fields in space. We shall examine /S

the essence of the solution method for these kinds of problems using the example

of the synthesis of discrete, linear antennas. For the sake of simplicity of ex-

planation, we shall limit ourselves to cases of symmetrical radiation pattern

diagrams, for which the Bromvich functions contain only odd wave types.

Introducing the variable x-cosO, we represent the fixed radiation pattern

diagram in the form of an angular multiplier of the Bromvich function U(x)&L 2

L-1, 1]. At the same time, as is well known, the function U(x) may be interpreted

in the sense of a convergence on the average along the section [-I, 1) to a series

according to Legendre polynomials. In this way:

105



We shall introduce the coefficients -

The Bromvich function for the given field in the far zone takes a form cor-

responding to expression (6) for the case m=0:

L (x. rv i - -I 1 .

We represent the linear antenna being synthesized in the form of a series

of N dipoles disposed at the points +z n . The amplitudes A2q+l in this case are

determined by expression (12), and the problem reduces to finding the values of

Pn" Above all, we should note the possibilities for an approximation solution to

the problem. Taking the given function U(x) in the form of a finite series:

L >in =- a P,

and assigning a number of dipoles N-2Q in the antenna being sought, such that:

I. :
•- 4-- 60-. 2q - ---

N

we reduce the synthesis problem to solving a system composed of Q=! equations

with the same number of unknown pn"

From what has been analyzed above, it follows that in determining the number

N, it is necessary to take into account, in particular, the dimensions of the an-

tenna, in order that the waves excited by the antenna being synthesized with ampli-

tudes A2q+l IN can be ignored. It is especially necessary to take care in doing

this and in checking for the synthesis of superdirective antennas.

It should be noted that this method of solution can also be convenient for /

synthesizing nonequivalent arrays.

For the synthesis problem, it is also possible to apply a method of solving

a system of linear equations.
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We take the given function U(x) in the form of a finite harmonic series:

i t )= " '  C,, !.q'.'a '.j!7)

21T
where a=-L, T being the expansion period:

TT

-- "-2

CL - .sin naxdx.
T

Equalizing the right members of expressions (14) and (17) to each other,

multiplying them by P 2q+(x), and integrating with respect to x across the inter-

vals -1 to +1, we get, taking into account [81:

3 ~ 3 (n
2q 7 - --

Comparing the derived expression with formula (12), we note that if kzn=an,

then: .c? 19)
63

The antenna being synthesized in this case is an equivalent array of dipoles

disposed at the points zn=* .

The antenna length L -N

10
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OPTIMAL DIFFERENTIAL ELECTRIC FIELD DISTRIBUTIONS IN AN ANTENNA APERTURE /9

* R. A. Konopldv, L. N. Zakhar'ev

Formulas are derived for optimal field distributions in an aperture assuring
the maximum magnitude and slope for the major lobes in a differential radiation
pattern for a broad class of antennas.

Introduction

This article is dedicated to finding optimMl field distributions in an an-

tenna aperture creating a radiation pattern of tbe differential type. The ampli-

tude-phase electric field distribution is optimized in accordance with the demands

to generate maximum values for the slope in an equisignal direction and amplitudes

for the main maxima in an antenna's differential radiation pattern.

Optimal electric field distributions make it possible to find the maximum

possible achievable parameters for antenna equipment. Comparing them with param-

eters derived from actual equipment, it is possible to give an objective estima-

tion of the quality of development. Together with this, an optimal distribution

may serve as a limit, towards which there is a convergence in selecting an actual

distribution. In several cases, for example, in constructing multielement antenna

arrays, the optimal distributions can be directly applied.

A large number of articles, written both in the USSR and abroad, is dedicated

to the problem of optimizing electric field distribution in an antenna aperture.

Thus, in the works [1, 2, 3, 4], field distributions in linear and round apertures

are found which realize a minimum level of side lobes and a maximum kpd [efficiency

factor]. Several generalizations and advances have been generated in the works

cited [1, 2, and 5, 6]. In works [7, 8], optimal coefficients of excitation for

a finite number of wave types in a reflector radiator have been determined, which

make it possible to derive extrema features for overall differential radiation pat-

terns for a reflector antenna. In the works cited [1, 9], coefficients of excita- /9

tion for an equidistant antenna array are optimized.

Some results in the present work are well known, in particular, the optimality
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of a linear electric field distribution in an antenna aperture for a maximum

slope in the differential radiation pattern, and these results will be presented

here only for the sake of filling out the analysis.

Maximum Slope of a Differential Radiation Pattern for a Linear Aperture

The electric field distribution in an antenna aperture creating a differen-

tial radiation pattern is wxitten in the form of a trigonometric series:

W
A(x) = 2 Bsinn x ()

where x is the relative coordinate in the antenna aperture, Bn are unknown con-

stant coefficients.

The radiation pattern R(u) corresponding to distribution (1) may be calculated

using the integral relationship:

R,,) -- .4 (x) e dx, 42)

2 r

where u=asinO, K=- is the wave number, a is half the antenna aperture, and 0 is

an angle taken from the normal to the antenna aperture.

Substituting expression (1) into formula (2), and integrating it, we get:

nB,, 43 )

Differentiating this expression with respect to u and taking u-0, we find

a formula for the slope of the differential radiation diagram S in the equisignal

direction:

S r2%~ A)~2 (4)
'I

The coefficients Bn must satisfy the normalization condition .f 42w(x)dx . Pi,

Here, p. is the full power radiated (received) by the antenna. In what is to

follow, we shall take P -l. At the same time, the normalization condition may

be written in the form: 1,
A 2 ux~dx 'I. "

-I

Taking formula (1) into account, this condition is expressed as:
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The Lagrange method is used for finding the conditional extremum. We shall

introduce the new function:

where g=ZB2-1 is the normalization condition, p is an undetermined multiplier.n

The condition of the function extremum (B ,P) yields a system of equations
-' n

with unknown B and u: _ _ _'I . g' 0),"
dB, 0

Using the second equation from the system so generated, we determine:

- - i I' ,
Bn 

s'

The undetermined multiplier p is found from the normalization condition:

t In this way, the electric field distribution in a linear aperture that as-

sures a maximum slope S in the equisignal direction is%

A. V

This expression may be easily transformed into the form:
,-Ax) = t~ 3

The linear distribution (12) is transformed in accordance with expression

(2) into the radiation pattern:

R() sinflI4-UC u(c3s)
'U

which is pictured in Fig. I. The characteristics of this radiation pattern are:
S{O)= 0,82; .,, 1,07; uM,. 2,081.

The value of S(0) is given in dimensionless units. The slope is given in

absolute units:
Sa -, ,82 ,c. (14)
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Fig. 1. Optimal rad.iLation patterns for a linear aperture:

with maximum slope at u-0;

- wit,. a maximum level of the first lobe.

The Highest Value of tht irst Lobe of a Differential Radiation Pattern for a
Linear Aperture

We shall determine the electric field distribution in an antenna aperture

by means of the conditions for deriving the greatest value of the first maximum

of a differential radiation diagram. We shall find an auxiliary function using

expressions (3) and (6) in accordance with the demands of the problem:
,15

(P (u, B,, f u . B,,-1 0 (15)

The conditions of the extremum of function 0 will give a system of equations:

- =, - 0-=
T57 au (16)

n= 1, 2. ..

Solving this system, we find:
B -'3 W asin Us 7'

For finding the value u-Um, the corresponding maximum of the radiation pat-

tern, it is necessary to solve a quite complex transcendental equation ,-O, in

which the coefficients have the optimal values (17). However, this problem may
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be resolved by means of a simpler method. In fact, the coefficients found accord-

ing to formula (17), with an accuracy to within the value of the constant multiplier,

are in agreement with the coefficients of an expansion of the function into a

Fourier series: .4(r) = Nsin V, ' .

From condition (5), it follows that:

sin 2

The radiation pattern corresponding to the distribution according to (18)

has the form:

R (u) = I sin(u-V) _ sin(u+1) 7

21"

It is now necessary to determine the optimal value of V and the value u

to which corresponds the maximum of the radiation pattern. From considerations

of symmetry, it follows that expression (20) reaches a maximum at V-u. In this

way, it is sufficient to determine the maximum of the function in the following

manner: M sin XflR (uV)I..v = ,/ I 21-",'

Taking the derivative of expression (21) equal to zero, we arrive at the

transcendental equation: tg 2V - 2V, (22)

the solution to which is V-2.247. This solution could have been generated directly

from the system of equations:
R. , 0) 4o (U, . 01. (23)

It is easy to convince oneself that this is the case if the value u-V-2.247

be substituted into equation (23). The optimal radiation pattern is shown in Fig.

1. Its basic parameters are: S(O)-0.78, N-1.103, UM-2.247.

Maximum Slope of a Differential Radiation Pattern with a Round Aperture

We shall examine a planar round aperture, in which an arbitrary field is

assigned:
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.4r (., co m (p B ,snm% , t, r), 124)~

where Am, B are unknown coefficients, 3m is the Bessel function, a is the

l-th root of the equation Jm(x)=O.

The radiation pattern (Fig. 2) may be written in the form:
t I

D (A () = uA(r)ef' ) rdrd T. (251

where u-<asin; a-l.

Fig. 2. Round aperture.

We shall examine the radiation pattern in a fixed plane, for example in the

plane *-!:
226

R (u) = A (r 4p) eiu"Ial rdrdyi. (26)

In this plane, only those members of the amplitude distribution (24) which

contain the multiplier sinm have an influence on the formation of the differen-

tial radiation pattern, and for this reason we get:

A ----- 0. (27)

Taking expression (27) into account, the radiation pattern may be expressed

thusly: R .)=.?- .B.,[(_I )._ I] .. :'i_ (2,) J& (u) (28)

It is clear from this that only odd numbered harmonics contribute to the

differential radiation pattern. We shall calculate the slope of the radiation

pattern [formula (5)] in the equisignal direction. Taking into account that:

0 whenm -?
J' (0) =1 | m =r'" (2*9)

2 when
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we get: /e

f f) i B30)

The normalization condition, similar to condition (5), is written in the

form in this case:

A2 (r, q)rdrdq = - B2 .

In order to determine the coefficients assuring a maximum slope S, we con-

struct the auxiliary function:
(D(B1,I - F (B,1) .-- ,, g, ,32)

where g =-.2 NB:J(j)J(,,J. - I = 0.

In accordance with the Lagrange method, we have the system of equations:
d__ -o0. g= (,331
OBt

whose solution is found:

B11 -

In this way:

.4(r4) - . i J5in: '5

From a comparison of this expression with the well-known expansion:

AV 136)r

it follows that with the normalization:

2 2
A(rf) -- r sin (=p Y (37)

with an accuracy to within the value of the constant multiplier, this expression

is in agreement with the optimal amplitude distribution of an antenna having a

linear aperture. The radiation pattern corresponding to distribution (37):
R (U) = 4 1 ,( 38)

U

is picturedlin Fig. 3. The basic parameters of this graph are: S(O)-0.88;

fi"1. 26; U-2"3"115.3
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Fig. 3. Optimal radiation patterns for a round aperture:

-- ---- with maximum slope at u=O;

with a maximum level of first lobe.

Maximizing the Amplitude of the Major Lobes of a Differential Radiation Pattern

We shall turn once again to a radiation pattern (formula (28)1 formed by an

arbitrary electric field distribution (formula (24)] in a round antenna aperture,

and we shall select amplitudes Bm1 of the field disposition in the aperture in

such a way that when fulfilling the normalization condition:

2 12
"2 .. 2 2

It=OiMo 0

a round aperture will create a differential radiation pattern with a maximum am-

plitude of the major lobes. As earlier, we shall use the Lagrange method and in-

troduce the auxiliary function:

Setting the derivative of the auxiliary function in terms of Bml, u, and u

equal to zero, we generate a system of equations for finding Bml, UM and ii (UM is

the value corresponding to the direction of the principal maximum of the radiation

pattern): a. as
=o, 0,g=0.

From this system of equations, it follows that: 1
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In expression (40), the value V=UM is the solution to the transcendental

equation derived by substituting the found values of Bml into the equation 
a-D

The solution to this equation represents substantial difficulties; however, the

value V may be found by means of an indirect method.

It turns out that if the function:

A(r. rf)=sin(1rsin ) t4!)

is expanded into a series similar to series (24), the coefficients of the expan-

sion derived with an accuracy to within the value of the constant multiplier are

in agreement with expression (40). From this, it follows that the electric field

distribution (41) is optimal, that is, it assures a maximum value for the first

lobe in the differential radiation pattern. The radiation pattern corresponding

to the optimal field distribution has the form:

I d2 ) L 1-VF) -_ 42t

The value V=UMaKC is determined in the same way as in the foregoing case.

We take u-V and find the value V at which R(V) reaches a maximum value.

For this, we solve the equation:
8R(V) a, 8 /-3. _i L _ _ . (43)

This equation reduces to the transcendental equation:

1, QV) = - J3 2V), t44)

from which it follows that V=2.568. Thus, the value for the first maximum of

the radiation pattern is R(u)=1.33, and the slope of the radiation pattern in

the equisignal direction is S(O)=0.82.

The graph of the optimal radiation pattern is presented in Fig. 3.

The Case of an Arbitrary Aperture

Comparing the results derived earlier, it is not difficult to note that the

character of an optimal field distribution does not change with the transition
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from a linear aperture to a round aperture. A similar result may be derived for

a square aperture. From this, it follows that the optimal field distribution under /1

consideration here does not in general depend on the shape of the aperture. Another

special feature of the derived optimal distributions is their dependency on the

coordinate of the plane (.x0) in which the differential radiation pattern is

formed. This is explained by the fact that the optimal field distribution must

assure a maximum orientationinthe olane y-O, which is achieved with a uniform field

distribution along the x-coordinate in the antenna aperture (Fig. 2).

We shall attempt to generalize the presumption made with respect to the opti-

mal field distribution for an arbitrary aperture using the example of deriving the

maximum slope. We shall consider that a field distribution depends only on the

y-coordinate.

We shall examine an arbitrary aperture (not necessarily a singly connected

aperture) whose extent along the y-coordinate takes up a portion along the OY-axis

from -! to +1 (Fig. 4). For calculating the radiation pattern in the plane x-0,

Fig. 4. Arbitrary planar aperture.

it is convenient to introduce an equivalent aperture with respect to the y-coordi-

nate (Fig. 4). The shape of the aperture will be described essentially by means

of the positive function 2 (y). Then, the radiation pattern in the plane under

consideration may be represented in the following form:
+1

R u= f A (x. y) e'"' dxdy V_2* (y) (y) e"uY dy. (45)

Insofar as it is differential radiation patterns that are being considered

here, we shall assume first of all that:
1R(o) = V1yAyd= o. (46)
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From condition (46), it follows that the zero point of the coordinate system

in the equivalent aperture should be chosen in such a way that it overlaps with

the "center of gravity" of the adduced distribution. The expression for the slope

S at u-0 may be easily generated from expression (45):

S(o)= _ ,(y) yA(y) dy. (47)

We shall introduce the normalization condition: /1

g J1pY) )A2(y)dy-I = 0. 4'-

In order to abbreviate the notation, we shall denote:
(y)A (y) = B (y), * (y) y = (f(y). 049)

We shall represent the unknown functions B(y) and 4(y) in the form of Fourier

series: I
S,! 1 A cosn y- - Bsinn-y

,f 1,Y1 . cos n y - i,,sin v::y I "

Taking into account formula (50), expressions (47) and (48) may be trans-

formed into the following forms:

S kO) = A,, O": -'"s, "

o I 51

o

In accordance with the Lagrange method, we form the auxiliary function:

=F +!Ig. ,2)

The system of equations:

- 0. =0, g=0 1 , 531

makes it possible to determine the unknown constant coefficients An, Bn:
An =-04®. B4 = (-5. ,4)

From the expressions in (54), it follows that in the case of an optimal elec-

tric field distribution in the aperture B(y) and *(y) with an accuracy within the

value of the constant multiplier, they should be in agreement, that is:
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or, takna into accoiirnt formula (49):

The constant multiplier may be easily determined from condition (48): /1

J" 2'  ( y, y~d y

V 3-
In this way, the optimal distribution assuring a maximum of the slope S in

the equisignal direction does not in fact depend on the shape of the aperture,

and is always equal to:

(y)= (58)12" (y) y'y

The slope S corresponding to this distribution is:

S 0s) V2 S(y y~y. (59)

Conclusions

I. For a broad class of antennas, expressions have been derived for opti-

mal field distributions at an aperture which assure a maximum slope for a radiation

pattern of the differential type and a maximum value for the major lobes of the

radiation pattern.

2. The phase characteristics of the field in the aperture for assuring

maximum values of S(O) and Rm(u) must be constant.

3. The optimal distributions derived depend only on one coordinate in the

antenna aperture, the coordinate corresponding to the plane of the formation of

the differential radiation pattern, and it does not depend on the shape of the

aperture.
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CALCULATING THE CHARACTERISTICS OF A JUNCTION OF TWO WAVEGUIDES BY MEANS OF /1
A RESONATING COUPLING APERTURE

ye
G. A. Ivstropov, A. M. EvseevIA problem in coupling two waveguides by means of a resonating coupling aper-

ture is solved. The equivalent circuit for the junction is determined. The cal-
culation methodology for the parameters of the equivalent circuit is cited.
Particular cases of junctions of rectangular waveguides and a rectangular wave-

*[ guide with a round waveguide are examined. The theoretical conclusions are com-
pared with experimental results.

Introduction

The coupling of waveguides by means of resonating coupling apertures is

widely used in the creation of antennas and other devices for superhigh frequen-

cies. In order to carry out computations for this kind of equipment, it is neces-

sary to know the equivalent circuits for the various waveguide junctions by means

of an aperture, as well as the coupling of the parameters of the equivalent circuit

together with the geometrical dimensions and the wavelength.

Despite the fact that a coupling of two waveguides by means of an arbitrary

coupling aperture may be computed for the most part, still it is possible to gen-

erate a simple equivalent circuit and computational formulas only for a narrow

resonating (half-wave) aperture.

Works [1, 2, 3] are dedicated to the question under consideration here. The

methods for solution used in them, however, did not make it possible to derive

formulas convenient for engineering calculations, nor equivalent circuits. In

this article, a determination method for the characteristics of a junction of two

waveguides by means of a resonating coupling aperture is used; this method was

developed in work [4] for a rectangular waveguide and aperture radiating into a

half-space. The results from work (4] are generalized for a waveguide of any

arbitrary cross section and for a resonating aperture radiating into another wave-

guide.
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The Formulation of the Problem and the Method for Solving It

The possible methods of joining waveguides by means of a coupling aperture

are presented in Table 1 (using the example of rectangular and round waveguides).

For the sake of simplicity, we shall assume that in the waveguides only a principal

type of wave may be propagated. The field source in the problem under considera- /2

tion here is a wave being propagated in a waveguide 1 or 2 and incident to the

coupling aperture from the left.

Under the influence of the incident wave (with an effective amplitude of A0

and power P0 ), a voltage with a complex amplitude U is induced in the aperture.

Once the coupling aperture has been excited, it begins to radiate energy both into

waveguide 1, as well as into waveguide 2. The amplitudes of the waves induced in

the waveguides and being propagated to the left of A and to the right of B away

from the aperture are expressed thusly:

Al. 2 =-U ( P 2- M~,2/

B1, 2  L (Pl. 2+i ql*) J' 1

These formulas were derived in work [4] for a rectangular cross section wave-

guide, but it is an easy affair to demonstrate that they are justified also for

a waveguide of any arbitrary cross sectional area. The parameters p, 2 and q 1,2

depend on the geometrical dimensions of the waveguide and the disposition of the

aperture on it. We shall consider that the problem of excitation of each waveguide

by means of the coupling aperture with a voltage U at the center has been resolved,

that is, the parameters P1,2 and q, 2 have been found.

The power of the wave being propagated in the waveguide:

P .2 = JI. 2i2Sl. 29 (2a)

where S 1,2 is a coefficient depending on the shape and dimensions of the cross

sectional area of the waveguide and the wave type.

In this way, the power re-emitted into one of the waveguides with power

delivered to the other is:
P..,. 1 = 2S .2U Pl. 2. + qi, ) 2 0., , P 2b)

1 w~

lHere and further, the indices 1 and 2 relate to the first and second waveguides
respectively. 123



Table I

Diagram of junctioniu3 Conductance Notes /1

2 c 3ci 4 5

7, , 
1 -2 2 and q1

g! a, b , % [ _P _ q1- P 1.2 .

N i p2 b, + q2 are calculated
according to4 formula (11)

i - ~i~jSf 2
a ac b, I -,orsind -g,=2_-- IS7-- ., i

2 acI - ord sini g
,< Cos 2 sin 2,)

Cos sin a2

21lb -.Lq 1p, and qj accord-
3 912 a b, PI qT ing to formula (11)

a. 1j q2 according to

formula (15)

q2 according to
,4 a_ 2  formula (15)

S . .b2 pl and qj accord-

al ing to formula (11)

;/1

a, b qi 11iiaccording to(I,. b. P. Iformula (15)
I2 according to

i a h Pformula (20)

2 according to6 ,2 (7,2 h2 p ormula (20)
\j I according to

-ormula (15)
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and q, according

7 t "ta, b, PT+-q! t frmula (11)

S 2 P2 according to
' formula (20)

______..________,,_______________,, _________, __, ________,_____,___o_/_

.ab, P2 P, and qj according
2 1 atb, p2 -2 to formula (11)

.P2 according to

formula (20)

aaS 1 b 4 cos a ,

a. b, cos' a2 sin)X"s

- - -- _ ( I4 a, ,

CO" . C o 2') \

2?sjb1  2 qi according to
1 ,___1___ formula (15)10. .[ acc. to form. (23)

ZO , S according to

2 KP formula (22)

q according to

a Qformula 
(15)

R ___ _ S according to
S1 a S, n o formula (22)

-0 Q according to

Iformula (23)

Pi and qj accord-

61, aing to formula (11)

12I ZL Q 7-I 2S according to
ZO Q [ l formula (22)- * ~Q~) Q according to

formula (23)
pl and qaccord-

I' Q13 ing to formula (11)
Z,)Q 2 I S according to

formula (22)
1ab 1 pq) Q according to

- 125
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where:

2S. pT.+q

Uo=UJ is the effective value of the pulse height at the center of the aperture.

In this case, if the coupling aperture is cut on the face end of the wave-

guide, or if there is a plunger located in the shoulders of one of the waveguides,

the pulse heights of the waves in formulas (1) must be taken to be equal to zero;
I this must be taken into account by excluding the two from formula (2b).

It is not only the power re-emitted into the waveguide that is of great inter-

est, but also the phase of the re-emitted fields. For waves re-emitted respec-

tively to the left and to the right of waveguide 1 and waveguide 2 (with an index /1

of two) or conversely (with an index of one), we get:

. argU - are, 9-, it. 3 rg U- arc t3, (3
I.2

The phase of the voltage U may be determined by using the reciprocity prin-

ciple, from which it follows that the phase shift between the voltage in the

aperture and the wave in the waveguide remains constant, both for the excitation

of the waveguide by means of the aperture, as well as with the excitation of the

aperture due to the wave being propagated in the waveguide:

V Pi..

Pt P

.== + arc tg- -/ _arc t .

P1 P:

under the condition that the wave is incident on the aperture from the left in

waveguide 1.

Formulas (1), (2), and (4) are in agreement in form with similar baseline

formulas in the work cited [4]. For this reason, all the results of this work,

including problems in the matching of an aperture with a waveguide, hold for the

case when the aperture is cut in a side wall of an exciting infinite waveguide.

In this way:
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2

gi. 4St. k p2. 2 -, . .

The power of the wave inciden. upon the aperture is taken to be equal to

unity. The equivalent connection circuit is shown in Fig. 1. The electrical
lengths are:

2 P'

8 6-

Fig. 1. Equivalent connection cir-
cuit of waveguies (waveguide being
excited with aperture in a side
wall) joined by a resonating coupling
aperture.

For the analysis of the functioning and computations for the devices using

the coupling types considered here, it is perfectly possible to use the methods

analyzed in (5, 6].

If the aperture is cut in the face end of the exciting waveguide 2, the re-

sults of work [4] are not applicable. In this case, the voltage U may be found

from the equation for the energy balance having the form:

Pt = P, A. + POT p, "

where Pna uS1 ,2A ; PHan is determined by formula (2) and:

1 p S p,2' A. ) 2-o). (9)

Here, it has been taken that the reflection factor off the face end without

an aperture is equal to 1.

From expressions (2) and (8), we get:
4&j. 2e

P"1 " 2 = (. 2 -' 1) . l0e,,S.(dq ~)R' . L 0

The formula for PHan 1.2 is in agreement with the expression for the power
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dispersed in the load for a double-wire line with conductance g9,2" The power

reflected from the aperture [formula (9)] is also in agreement with the power

reflected from the load g1, 2 in a double-wire line, that is:
[l--g,1. Y'

+P1P2

In this way, the equivalent circuit of a waveguide with resonating coupling

aperture in the face end is a double-wire line with load g 1,2 (Fig. 2).

Fig. 2. The equivalent connection circuit
of waveguides (waveguide being excited with
aperture in face end) connected by a resonat-

ing coupling aperture.

The methodology derived here is used for calculating the most widely used

types of coupling two rectangular waveguides, as well as for connecting a rec-

tangular waveguide with a round waveguide. For this, it is necessary to determine

the coefficients P1, 2, q1,2 and the radiation resistance Ri,2 .

Derivation of Formulas for the Coefficients of Excitation and Radiation
Resistance of an Aperture Cut on Rectangular and Round Waveguides

We shall examine the case when an aperture is cut on the side walls of a

rectangular waveguide. We shall use the formulas derived already in solving the

problem of the excitation of a waveguide by means of an aperture and the for-

mulas cited in the accompanying works.

When exciting a waveguide by means of an aperture cut into the long wall of

a waveguide and inclined on the bias (Fig. 3a), from work (4], we have:

1 2= C z 1 sin z. Cos
70. 2 € al,. Ah. -2 .,2 1 2 21

c 4 a cos X1.2 4 -4

sin 2? -I ' K

SI -
\

0in 2 in , 4,4, i. a,. I- --- - ,

q.2= 0. 2 a, 1 2 1 /2
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Fig. 3. Means of exciting waveguides by means of an aperture.

Here:

' l 22 !

2 K 1. 2 2 -Cs 2 s i 2

: = ) . Cos a sin x.
11. 2 =K 1  2 1 .l 2

the indices 1 and 2 relate to the first and second waveguides respectively (see

Table 1).

The power P,2 being propagated in the rectangular waveguide is connected /1

with the effective voltage amplitude of the electric field by the formula:

p I A.A a,. 2 b (12)

where Z0 is the characteristic wave impedance of free space.

Consequently, for a rectangular waveguide:

P 1. 2. 2 . (13)

As a result, from formulas(12), (1), and (2), we get:
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R_ , ' .(14)
2 1 , 2t P12q. 2 !

If the inclined aperture is cut on the narrow wall of the waveguide (Fig. 3b),

from work [71 and formula (1), we get: p,2=O,

2- sina,, 2 cos . 2 sin 21.2) (15)1J .Z. 2 .2 1 - . 1,i'=. 2

and the radiation resistance is:

z2 (16)Rai. 2 Al 2al. 2 bl 2 q1.,

We shall derive formulas for determining the parameters p1,2 and q1,2 for

the excitation of a rectangular waveguide by means of an aperture cut into the

facing end (Fig. 3c). We shall use the method used in work [8] and applied in [4].

The components of the fundamental type wave in a rectangular waveguide are

expressed thusly:

E- Aocos( - z)e

S1 (17)

H, - o- sin -j z e-'

The minus sign in these formulas relates to waves being propagated in the

direction of the increase in x, and the plus sign in the direction of decrease.

We shall assume that the aperture is narrow and resonating, so that the volt-

age along it changes according to the law e-Ucos*x. The wave excited by the aper-

ture in the waveguide is determined by expressions (17) (with a minus sign), if

they are multiplied by the coefficient of excitation C. Using the method ana- /1

lyzed in work [4], we get the following formula for finding this coefficient:

C (--L SE,H,1IdS.
2P,

Here El is the field in the aperture and induced by the aperture in the wave-

guide. The field of the wave incident on the face end (without an aperture) and

reflected off of it, that is, the sum of the space and reflected waves (17) are

used as an auxiliary wave field, taking into account the fact that the reflection

factor off the face end is equal to 1.
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in this way, H, in formula (18), with x=0:

-o O'

Taking into account that the aperture is narrow, after integrating expres-

sion (18), we get:
COS 

-  
-" COS 3 2)C = '"!-- " -cos; j, in -

PZo at. 2 CS ,2) K

The wave amplitude induced by the aperture in the waveguide is:

COS -7 a., , cOsc 's- - -- c "o-"7

A = CA, U 2K t. C( ,S
-~ ~ ~~~ COS":I 2 -K l '.2

. 2

and consequently:
2X0s2 1 .2 os ~CS - = cos . sin - -.

P1.2 = a. .(a,. (0
a 1. 2 a 1. 2 at n COS 71. - 12, "

qj, 2 = 0

Taking into account that the aperture radiates only into one shoulder of

the waveguide, the characteristic wave impedance is found from the expression:
R,2z (21)

., 2  2Z2,pI. , '2a t. . '." _ . 2

The problem of the excitation of a round waveguide by means of an aperture

cut in the face end (Fig. 3d) may be solved in the same manner as for the case of

a rectangular waveguide.

For the case of the disposition of the aperture symmetrically with respect

to the radius of the cross sectional area, a wave is induced which is oriented in

such a way that the vector E passing through the center of the cross section will

be perpendicular to the aperture. Expressions for the components of the tangent

and reflected waves in a round waveguide may be taken, for example, from work [9]. /1

Formula (18) for the coefficient of excitation is retained in this case. The

auxiliary field on the facing end is determined by the expression:

H, M2e.!

$ An arbitrary Bessel function can be expressed [10] thusly:

2J ix) = 19(x) - I x).
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For calculating the integral (18), we take the Bessel function in the form

of a series [101:

( tKr-) = V(- I),"
"0 (n m)!

M-0

After computing the integral, we get the amplitude of the field induced in

I /' I

the waveguide: .1 - Q,

where:

Sr ) jI (,v.). (22)
W ,x2_l - m (2m + ).P m (2m )rIC= 2471 (,n!)2 (M + 1),,2M ><

2V3; ( - - g " ' (92 m , - 2 p ) '2 .

where r0 is the radius of the waveguide.

The power radiated into the round waveguide is:

ps I A'S 0 s"o '  Q.

Consequently:

R2  S (24)

Q'I

1 Q q0 (25)

Characteristics of Concrete Types of Junctions of Waveguides by Means of
a Resonating Couling Aperture

On the basis of the methodology and the expressions cited above, it is pos-

sible to generate computational formulas of the conductance and electrical lengths

entering into the equivalent circuit for possible types of couplings or Junctions

of two rectangular waveguides and for couplings of a rectangular waveguide together
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with a round waveguide (see the table). It should be noted that in coupling a

rectangular waveguide together with a round waveguide (if the aperture is cut in

the long wall of the rectangular waveguide), it is possible to assure radiation

of all the power out of waveguide 2 into waveguide 1 at any orientation of an Hi

type wave in waveguide 2. In this case, the field phase in the shoulder Q of the

rectangular waveguide is equal to p, and in the shoulder 6-(-p) where 0 is the

angle between the vector E passing through the center of the cross sectional area

of the round waveguide and perpendicular to the center line of the rectangular

waveguide.

For this, it is necessary to cut two perpendicular apertures in the waveguides

whose conductances are equal to unity (in the figure in the table, the second aper-

ture is shown by the broken line) with a concomitant fulfilling of the condition

pl=ql, which follows from formulas(3) and (10).

Calculation Results and Results of Experiment

The formulas generated above were checked experimentally in a series of parti-

cular cases. The first case relates to the coupling of two rectangular waveguides

by means of an aperture in the narrow wall of one and in the facing end of another

(Fig. 4). This type of coupling is distinguished from the type examined above in

I,,

Fig. 4. Coupling of two rectangular waveguides by means of a resonating
coupling aperture, experimental study.

that the cross section in which the aperture has been cut was not completely

metallically coated, and the aperture goes through to the broad wall of the wave-

guide.
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The computational and experimental relationships of conductance to the angle /1

of incline of the aperture for waveguides of various cross sections are shown in

Fig. 5. As may be seen from the figure, the experimental and computational curves

differ from each other markedly. This is explained by the nonfulfillment of the

Ot

- I

. , : I -11)' .'

a' J-.b

/ 4.

Fig. 6. Computational and experimental
Fig. 5. Computational and experimental relationships of conductance and the
relationships of conductance gl of an angle of incline of an aperture dis-
aperture and the angle of incline of posed on the narrow wall of one wave-
the Junction (Fig. 4). guide and the facing end of the other
(.. experimental points) at: (the figure in the table) with a coup-

a) a.<a. & b. fi; ling of rectangular waveguides (0-90°;
c, a =c, & b,=b 0 1 La2 CL; alma 2 and blfb 2 ).

Key: (1) computational .... are experimental points.

conditions of the theory (complete metallization of the cross section of the

waveguide in which the aperture is cut, and the placement of the aperture com-

pletely on the narrow wall of the waveguide) in the experimental process. However,

when the computational curve is multiplied by the constant coefficient 0.68, the

curves derived from this practically overlap with the experimental curves. In the

case of larger angles of inclination, when the aperture is completely disposed on

the narrow wall, the experimental curve begins to approximate the computational

curve without having to use the correction coefficient (curve b).

If the cross section of the waveguide in which the aperture is disposed has

been completely metallized (the aperture is completely fitted on the narrow wall of

the waveguide), the values for the computed and experimentally measured conductances
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agree with an accuracy not less than 2%. The relationship between conductance

and the angle of incline for this case is shown in Fig. 6.

A junction between a rectangular waveguide and a round waveguide was also 11

studied experimentally. The coordinates of the aperture on the broad side of the

waveguide and the size of the cross section of the narrow wall were computed for

the conditions g2-1 and plqi. The resonant length of the slot aperture, as in

the foregoing case, was experimentally selected. For one aperture, the ksv (stand-

ing wave ratio] <1.1. In the case of a cross-shaped slot, the ksv was dependent

on the orientation of the wave in the round waveguide; this is explained by the

reciprocal influence of the slot apertures, which was not taken account of in the

calculation. With decreases in the width of the aperture, the relationship r! the ksv

on the wave orientation decreased. For example, for apertures with a width of

1.5 mm, the ksv changed from 1.5 to 1.8.

Conclusions

The formulas for the calculation of the characteristics of the coupling be-

tween two waveguides by means of a resonant coupling aperture derived in the

article give a computational accuracy sufficient for all practical purposes. In

the experimentally confirmed cases, when the experimental conditions corresponded

to the base presuppositions of the theory, the computational accuracy was not less

than 2%.

The formulas derived in this way make it possible to compute the position and

orientation of apertures on waveguides according to fixed coupling characteristics.

However, the calculational methods for the resonant length of an aperture are lack-

ing with sufficient accuracy in the cases considered here, and the resonant aper-

ture length must be chosen experimentally.
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CALCULATING FOR A ROUND WAVEGUIDE WITH AN AZLMUTHALLY MAGNETIZED FERRITE /1
ROD

R. R. Yurgenson, N. G. Teytel'baum

On the basis of calculations carried out with the help of a computer of the
propagation constant of the principal wave type quasi-Hll in a round waveguide
with an azimuthally magnetized ferrite, an analysis of the relationship between
the differential phase shift and the various parameters of the ferrite and the
waveguide in the frequency range is presented. Solutions for the field components
of the electromagnetic waves are derived in the form of generalized power series.
Series and particular cases are transformed into Bessel functions or into a
Whittaker function. Recommendations on selecting parameters for equipment de-
signed to generate optimal phase shifter characteristics are given. The quality
factor and losses are assessed in an approximative fashion.

Introduction

Recently, a series of works have appeared in which a fast-acting, unilateral

ferrite phase shifter using a ferrite with a rectangular hysteresis loop, a so-

called "bistabile" phase shifter [1, 2], and results of experimental studies car-

ried out are cited. Normally, this kind of phase shifter is a rectangular wave-

guide, along whose axis a ferrite tube is disposed, or a set of rings magnetized

in the azimuth direction. It is controlled by current pulses passing along the

conductor loop.

A phase shifter is distinguished by its very low level of controlling mag-

netic fields, insofar as the demagnetizing factor of the specimen is equal to zero.

Despite the fact that a similar phase shifter has found wide application in prac-

tice, it has not been calculated theoretically, up to this point, due to

the complexity inherent in this problem. In work [3], the possibility of creating

a "bistabile" phase shifter in a round waveguide with the use of a symmetrical

magnetic wave (H01) is examined. This kind of wave is most favorable from the

point of view of the interaction of the ferrite with the SJ/1/, [superhigh

frequency] field with azimuthal biasing. The authors present a method for solving

the problem and for calculating the differential phase shift for a ferrite tube

attached to the waveguide walls. Obviously, this disposition of the ferrite is

far from being optimal, but even in this case, quite large phase shifts (on the

order of 0.3 rad/cm) are derived. However, the difficulties connected with
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exciting a symmetrical wave in a round waveguide significantly lower the merit /1

of this phase shifter. In the present work, problems in the theory and calcula-

tions for a "bistabile" phase shifter in a round waveguide using the quasi-H11

principal wave mode are examined.

The Solution to Wave Equations

The theory of electromagnetic wave propagation in a ferrite medium magnetized

by means of an azimuthal magnetic field, not depending on the radius, was con-

4 sidered in some of the works cited [4, 5]. The authors of these works restricted

themselves to the cases when the field components do not change in the azimuthal

direction. In work [5], it was noted that if the dependency of the field com-

ponents on the coordinate angle is expressed in the form e n , then a system of

second order differential equations is derived for the longitudinal field com-

ponents.

In a cylindrical coordinate system (r,Oz), the tensor w has the following

form for an azimuthally magnetized ferrite:
[0

ILI 0 J:0

-i:,. 0 i
where:

where y is the gyromagnetic ratio, w is the angular frequency, and M is the

residual magnetization,
H1fi 4 .0 - 4,  H

For the residual magnetization of a ferrite that is less than the saturation

magnetization, it may be approximately assumed that:
t&=I. (3)

iwt
From the Maxwell equations with the time dependency relationship e and

a relationship to the z-coordinate expressed in the form eiyz, and a relationship

to the *-coordinate expressed in the 'form e n , a system of equations for the

longitudinal field components may be derived in the following manner:

i



-c +----
H'-+-H,+ l--c+ ! =2 Hz--2-E. = 0

where: /1

p=r is the radius normalized for the wave number, k 2=w
2 UpO_-y2 , with y being

the propagation constant along the z-axis, and e is the dielectric permittivity

of the ferrite:

c and a are dimensionless magnitudes, with the prime symbol denoting differenti-

ation with respect to p.

The transverse field components are determined according to the longitudinal'

components in the following manner:

d~ 1RO~Iap.H
dp P .

(®., dE. ini j%)

= dp p (6)
t, qIit Hj

,p "

Getting rid of Hz and Ez successively from system (4), we get differential

equations of the fourth order for the longitudinal field components having vari-

able coefficients and which may be written in the form:

4I P" g, (P) " = , . .. .. ... )
V-0

where:

lHere and in what follows, the factor ei(wt-y
z+ n O) is left out.
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n2) n 2 - 1-a n2-2n - l)p8 '+2p + (1 -c)p

g1,(p) = 2(n2 - 1) + p+ (2-c)p (8)
g,(p)=4; g 4 (9)= 1

4~~' p, q, (p) o 9
V-0

where: /1

x H,-11I
T1

q8 o go C) --¢ , I
q , ,) = g , 2 c) -- 2 1

q,(,,,) -g.t () (-= 2, 3, 4)

The solution of the homogeneous differential equation (7) may be expanded

in the neighborhood of the regular singular point in the equation affO into the

series:

t The roots mi and the coefficients of the series A' may be determined accord-
i i

Sing to the Frobenius method [6, 7]. For n-*(1,2,3... ), we get:

"h = In+ 1; ms = n; ms,= Inj -' 1 mg :- - In., (12)

that is, the number of values of the root m i is equal to the order of differen-

tial equation (7).

It is well known from [6] that if the difference in the roots m i is a whole

number, then series (11) is a partial solution for equation (7), only for the

leading root ml-lnl+l. The remaining three solutions to the differential equation

are constructed in the form of a more general series containing In p.

Insofar as in the present case we are interested in solutions that are regu-

lar at the point P-0, solutions containing in p will not be further considered.

The first partial solution is expressed thusly: I

1-0O

Nera and in what follows, the sign of the module on n will be left out.
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where the coefficients are determined according to the recurrent formulas:

(2+ I)2, r (n + 1)
*F,(n+1+-)At + F(n+I+- )A .4 _34-1-)A,_

F(nl+ 1) - (n +1+ 1)(n - l)(n+ I- 2)(n +I- I)-2(n- 1) -- nn 2- I

F1(n++ 1) (n + )' -n 2

F(n++l)2((+-1)(n+e+g(1e-2t-(n+t-h-l)rA. =0, if 1<0 k4

here r(n+l) is the gamma function. /1

Substituting the partial solution Yj into equations (4), we get the first

solution for the system, regular at zero:

E., = CIU.. 1()

Here:

ahere:
Q,=(n + l+ l) 2- n21JAI+ At-_

The solution to equation (9) is built in the same way as the solution to

equation (7). Substituting the solution xI found into equations (4), we get

the second solution for the system, regular at zero:

EH,9 i Cs, T.6 (P)
.2 (17)

Here:
7-' . " () =x, '' B,e;iS

C 1 and C3 are arbitrary constants; the coefficients B1 are equal to:

(2n + I12 ( + i1

B,~ ~~~)tlF~~~)B_+~~+I-)t. (19)
t " -- , ' F(n- L + l)"

F, (.+1+ ! )= 2 ,i+ 1+ l Xa++H(1-nt%--|.+/ + 1) (.+l-i)Ie

F and F1 are determined according to formulas (14):
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bw's. C (p) = M, o.,

where:

M=[(n+l+ 1)2-n] Bt+acBt-i + (1-c)Bt-.

The region of the convergence of the series representing solutions (15) and

(17) of the system of equations is determined by the variable coefficients enter-

ing into equations (7) and (9) [6]. This region is an open plane.

The generalized power series entering into expressions (15) and (17) contain

module n, and for this reason, they do not depend on variations in the sign on n.

In the particular cases (ua -; n-0J), the solutions to the system must turn /1
a

into known solutions for an isotropic medium or for an azimuthally magnetized

ferrite medium with radial symmetry. We shall investigate these cases.

1. In going to the limit u -0, system (4) decomposes into two independent
a

Bessel equations for H and E . In this kind of medium, it is possible that there
z z

exist two kinds of waves, TE and TM waves. If u -0 (c=a=8-0), the first solution
a

(15) gives TE waves:

where:
lir ', ., , ) -- ,
S-.0

In (p) is a Bessel function.

The second solution (17), at ua1- (c-a-TrO), it changes into TM waves:

,,= 0, E., = CU(.

where:

Iim U.' (o) = 103(,) .
a.1.

2. In going to the limit n-NJ, system (4) also decomposes into two independ-

ent equations: a Bessel equation for E and an equation for Hz reducible to a

Whittaker equation. This is the case of radial symmetry considered in [4, 5].

Applying the limit n-N0 (8-rrN0) to solutions (15) and (17), we get for the

first solution:
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where:

... o o (uJim -', 77,",,c) (U
n-O JU

u = 2i pl.'" --
2iI

Mx o(u) is a Whittaker function.

For the second solution:
H,= 0. E_ ---

" C_, U:)( ,"-$,'O 2=O.p

where: 0.

iM UA(*2) ) U )()=

The transverse field components in both cases are determined according to

formulas (6).

From what has been analyzed here, it follows that the solutions to system (4),

regular at zero, include among themselves all types of waves propagated in an azi-

muthally magnetized ferrite medium. In this kind of medium, both components Ez
and H z are always distinct from zero (with the exception of the case when n-O).

In Fig. 1 are shown graphs of the following functions:

u(a'c)(P); U(a 'C)(P); T( T(c ) at nlca=O.54, c-0.45.

Fig. 1. Graphs of the following func-7t ions:

TI. T(aIC) (p) (curve 1);

4'~U $ITnc(P) (curve 2);

Deriving the Characteristic Equationu~c() cue4.

We shall examine a round waveguide of infinite length with radius a with an

azimuthally magnetized ferrite rod with radius b. The electromagnetic field
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components for the dielectric surrounding the ferrite can be written in the

form:

, =C, ,J, p) -L C4.Af (PIH

H/j = [CsJ, (pl) + C,,4AP (p1)"

E , =_i -- = E, + Ix ;

,~" 2i -- •irgI =+ Kqi (25)
E,.j = -- CE~ + IE inr -

i" = ['i--, I = V
71 2:g r , 1

where:

=,r=. 7 Cw1 Sole X
ASi * PI Ai .. i,

el is the relative dielectric permittivity of the dielectric, 0=-" , F/m. The

prime symbol denotes differentiation with respect to the argument of the function;

C2n' C~4n C Sn' C6n are arbitrary constants. The field components in the ferrite

layer are determined according to formulas (6), (15), and (17).

Substituting the expressions for the field coznonentS fr _ eressions (6),
Sr~an an

(15), (17), and (25) into the boundary conditions,, we get six equations for deter-

mining the arbitrary constants:

C ,P. a) + ,'V, (1.,) = 0, 21

(P,1)(C+ C ,L(.,) 0 0, (27,

C1,, [-T-- "" U' (% ') + "'~~ti .(.b.,) + i',, C (&,b,) ]
¢ - ,/.___

i. t c .7- ,, ,,)c, ¥ ~,
C. Po (Pbs) +i ! o "

+ c. n. 2,, 's o,, T -,- .., 2). ,.

Xi A+ C,,t'.' J. O',, -CN,') '. , '"

+ 4n-. J "b)0 1321

P611

+CIaL4.P 2 - 4,,N, (%b1) -0, 2

-C t (Os,) + flI4  /'7 2'~(', C,.,A ',
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*.'(.~~~ c)~+-nK,

r I Pb '

C2 el "1K+ ,ln o . n,,) . (,

"X, / " + C.. C,,)'" Jn(rl,1) -

.- -N,. (,bL- O. 31,

In equations (26)-(31), the following notation has been introduced:

pa =t -,, 2zxp.& -2- a- b

e2 is the relative dielectric permittivity of the ferrite.

The condition of the equality to zero of the determinant of systems (26)-(31) /1

determines the characteristic equation with respect to the propagation constant

y. It should be noted that the magnitudes Pa and y enter into the characteristic

equation only as cofactors, or as a ratio. For this reason, the value of the

determinant does not change if the signs on pa and y are exchanged.

At Y<l in the waveguide, waves of the waveguide type are propagated. If

e2U>(I2>1, the coefficient Ki becomes imaginary, and in the characteristic equation

it is necessary to exchange the Bessel and the Neumann function for a modified

Bessel function and a Macdonald function. In this case, a surface type wave will

be propagated in the dielectric.

Analysis of Calculation Results

The propagation constant was calculated by using a computer for the quasi-

HI1 principal wave type (n-l). Secondarily, the quasi-Ell wave mode, which is

most easily excited within exterior type waves, was considered.

Functions represented by the generalized power series (15) and (17) were

studied preliminarily. In the calculations, 24 initial members of the series for

each function were taken. At the same time, the calculation error in the function

was less than 10- 7. For calculations, values of the dielectric and magnetic param-

eters were chosen that are normally encountered in actual ferrites:

a --6, 8, 10, 12; 1' : p, 4- (0 ,3 ; 0 ,4); Il= .
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The geometrical dimensions of the waveguide and the ferrite varied across

the limits: a.0.2-0.3 with a step of 0.001, -=0.3-0.65, with a step of 0.05.
7-0 a

For the sake of generality in the derivations, all parameters and values

of the propagation constant were normalized to the wavelength.

In Figs. 2, 3, 4, and 5, the relationships of the differential phase shift
a b

AtY and - for various values of 2, a' b are presented. The curves fall off to
a a whca

the right for those values of - at which the quasi-Ell wave mode arises.

- Fig. 2. Dispersion characteristics
at F2=6;

:~1 -a*. 3;

a- - aff0. 4.

W

El ___ Fig. 3. Dispersion characteristics
at E2-8;

am - 3;
a

As may be seen from these figures, the character of the relationships between

the differential phase shift and the frequency is not constant. Along some sec-

tions (with normal dispersion), with an increase in frequency the values of
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4

Fig. 4. Dispersion characteristics Fig. 5. Dispers-ion characteristics
at E:2-10; at c2=12;

u- -a*. 3; - - - 4a=*O.4. - p=*O. 3, - - - .4.

Y fX-0 increase. These sections correspond to relatively "weak" fillings of

the waveguide by meansof the ferrite. On other sections, the characteristic runs

almost parallel to the abscissas axis, and then in third sections, an increase

; in the normalized propagation constant decreases with an increase in frequency.

In this latter case, the phase shift to a unit length either does not vary /

with an increase in frequency, or it varies only in relation to the slope of the

characteristic. Propagation of waves on this section may occur only with a very

strong filling of the waveguide by means of the ferrite or with large values of

2-

In this way, the character of the freency relationships is daterined basi-

cally by the degree of filling of the waveguide by the ferrite. With an increase

in the filling of the waveguide by the ferrite, the concentration of the superhigh

frequency energy increases in the latter. At first, with a weak filling, the ef-
fect of the dielectric waveide shows up strongly, and the concentration of super-

high frequency energy varies strongly with freency variations. Beginning at a

certain moment, ten all the energy, even at the low frequency portion of the fre-

quency range,as in fe ncy, o the ferrite, this relationship becomes weak, and
" characteristicPs beco less dependtnt on frequency.

i The fo n of the curves in the third section are connected with the excitation

freqencenrgyinceassith 4later At first,.with.a.weak.filling,.

. , ..... fect.. ofll' 11|1... -.......... the dieectric aveguid shows ...p strogly and th.cncnraio.f.upr



of waves and their propagation in regions near the critical regions, with large

a or 2. It is possible to explain this beginning with the curves Y(+pa)=f( )

shown in Fig. 6.

,,r/ i ,,, I/ , -- + _ .___________

//7 // /- : !,
00.,

OV Ow : i

/Fig. 7. Relationship of differential
40 g am 40 RI jphase shift to ferrite radius at Pa

Fig. 6. Dispersion characteristics at =a03 =.5

-- 03 -10.5

C 2-10; b =0.5; - € 2-8 ; h-0.6; 
X

-.... e2-8; -0.45; ....... - 2-10; --0.4. - 2 l ; - =
a.. a 2=8; Q.. . 26.

The relationships between the differential phase shift and the degree of

filling of the waveguide by the ferrite Zyf(-) are shown in Fig. 7.

From the figure, it may be seen that the activity of the phase shifter in-

creases at first with an increase in b/a, while this relationship becomes less

frequent the larger 2. With further increases in the filling, the increase in

this characteristic slows down, and then it begins to drop. This nature of the

curves can be explained by variation in he concentration and structure of the

superhigh frequency field in the ferrite.

At determined diameters of the ferrite, different for each 2, a maximum con-

centration of the superhigh frequency field occurs in the area of the radial wave

polarization in the ferrte. In this case, the phase shift reaches a maximum value. /I

Further on, the energy is redistributed across the cross section of the waveguide,

as a result of which the interaction between the superhigh frequency field and the

ferrte becomes weaker. As a consequence, there is no sense, from the point of
Tview of enhancing the phase shifter activity, in increasing the value 

of b/a by /I
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means of a more well-defined value.

On the other hand, from a comparison of the curves in Fig. 7 with the fre-

quency characteristics, it follows that in order that the frequency characteris-

tics not be dependent on the frequency, it is necessary to work with fillings

that are smaller than those corresponding to the maximum activity for all values

of C2 under consideration.

One of the more important parameters characterizing phase ferrite equipment

is the level of losses, and connected with this, Q-factors. Under "Q-factor," it

has become accepted to mean the ratio between a derived phase shift in degrees

to losses expressed in decibels. A precise determination of the magnitude of

losses requires substituting the tensor components P and 62 into the base equation,

taking into account their imaginary portions. For an approximate assessment of

losses and the Q-factor in a region far from the ferromagnetic resonance, it is

possible to use the well-known method cited in work [8], expanding the function

Y (E2, 11, 4a ) into a Taylor series around a value corresponding to the case without
~losses. Thus we get:

*_- + LL + P; (32)

The values of the derivatives are determined graphically, and for this the

equations Y'-f(P'a ) ,  'f('), and f(C' a ) are constructed according to the com-

putational data. The values for the imaginary components of the dielectric and

magnetic permittivity are taken to be equal to c'-0.02, p"-0.003, and p"a70.002.

Losses in the phase shifter with a phase shift of 360* (dB) are expressed

thus ly:

p = 54,7 ,db], (33)

aid the Q-factor thusly:

Q 6.6 (34)

A comparison of losses with the Q-factor of various phase shifters is car-

ried out in the medium frequency range, in which there is observed a weak rela-

tionship between them and frequency. The calculation results are shown in Fig. 8.
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Fig. 8. Relationship between wave-
- guide and ferrite parameters and the

dielectric permittivity of the ferrite.

. -

From a consideration of the curves, it is apparent that with an increase in the

ferrite dielectric permittivity, the optimal diameter of the ferrite and a length

necessary for deriving 60=360 decrease. At the same time, the magnitude of the /1

differential phase shift to a unit length, overall losses, and the Q-factor, vary

across a wide range.

Conclusions

The analysis carried out here of the functioning of a phase shifter with an

azimuthal bias makes it possible to draw the following conclusions.

1. The character of the frequency relationships is determined basically by

the degree of filling of the waveguide by the ferrite and by its dielectric per-

mittivity.

2. The frequency deviation-duration product for a phase shifter is deter-

mined mainly by the magnitude e2. At E2-6, the value for the normalized differen-

tial phase shift is maintained as a constant with an accuracy to within 1% of

the range of 16%, at c2-8, within the range of 12%, and at e-10, within the range

of 9%.

3. In creating phase shifters that work across wide bandwidths, it is

possible to derive phase shifts on the order of 0.4 to 0.5 rad/cm with Q-factors

around 270.

4. The theoretical studies carried out in this article may serve as the

basis for designing phase shifters of a similar type.

The authors would like to express their gratitude to A. I. Potekhin for his

valuable advice, and to G. L. Grayfer for carrying out the computer computations.
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A SPIRAL LINE WITH AN AZIMUTHALLY MAGNETIZED FERRITE CYLINDER /1

N. G. Motorin, B. C. Khmelevskiy, R. R. Yurgenson

A calculation is carried out for the propagation constant and the differen-
tial phase shift for the principal wave type in the following structure: a
spiral line with an azimuthally magnetized ferrite, with the line disposed in
an unbounded dielectric medium.

An assessment of the influence of the spiral parameters, the ferrite param-

eters, and the dielectric surrounding the spiral on the magnitude of the differ-
ential phase shift in the frequency range is given.

Introduction

Recently, a great amount of attention has been afforded the development of

bistabile ferrite phase shifters. In the works [1, 2], experimental results on

phase shifters using azimuthally magnetized ferrites in a rectangular waveguide

have been described. In work [3], the theory of and calculations for a phase

shifter in a round waveguide are presented.

It is of interest to examine a spiral line with an azimuthally magnetized

ferrite cylinder on the inside and a dielectric material on the outside in contact

with the spiral as a system representing a phase shifter. Several problems in

the theory and calculation for the spiral line with an azimuthally magentized fer-

rite disposed on the outside of the spiral are given in [4]. The dispersion

equation for the azimuthally magnetized ferrite cylinder within the spiral located

in an unbounded space is presented in (51.

Deriving the Dispersion Equation

We shall examine a single-thread spiral with a radius a, pitch t, and helix

angle e, within which there is located an azimuthally magnetized ferrite cylinder,
and outside of which there is an unbounded dielectric with dielectric permittivity

C2.

In deriving the dispersion equation, we will assume that a thin conductor for
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pulse reversal of magnetization is disposed along the axis of the ferrite cylin-

der and does not have any noticeable influence on the electromagnetic field. The /i

ferrite possesses a rectangular hysteresis loop, and current pulses act on it hav-

ing such pulse heights that the residual magnetization does not depend on its

radius.

The symmetrical case is taken into consideration, when the electric field

components do not vary in azimuth.

In a cylindrical coordinate system (r, ,z), the tensor of the ferrite perme-

ability has the form:

is 0 ilia

IMI = 0 t 0 ()
- iI. 0 II

For residual magnetization M.SM 0 (M0 is magnetic saturation) in a SI (expan-

sion unknown] system may be taken approximately according to (5] to be equal to:

.YM (2)

where P0 is the permeability of a vacuum, y is the gyromagnetic ratio, and w is

angular frequency.

The diagonal components for this are equal to:

P mt, P = 1. (3)

Using [4], we may write expressions for the fields in the ferrite and the

dielectric with great lag when the radial wave numbers in the ferrite and the

dielectric are approximately equal:

in the ferrite:
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= C,.. o(21PIr) S

" 1 .S0 (21t, r)

H,= 1 c, [o'e1,p ,s,. o (21Plr)' 2 2 S:. o (21lr)]

H,, CT "/ (1,31 r) (4)

E., = CLIO (IPI r)
E, = i C!,1 (IPI r)

•C.,* (0. 2 m 2pr
E, = - 4pp )2,' (Ir

Here, M (21BIr) is a Whittaker function,
xO S.. (2 IPlr) = 21Y. s..0(2jl)+S:.O(21N)l.

4

B is the propagation constant, %- Lasgn8, el is the dielectric permittivity of

the ferrite, 1o, 11 are modified Bessel functions, and the prime symbol denotes

differentiation with respect to the independent variable:

in the dielectric:
H,* DjK, (101 f)
Ht " DK( 01 r)

H 2 1 --,u, TKI (QP r)€ )

19 (5)
E -D, ( r)
Ej -i Ds1 01 r)

where K0, K1 are Macdonald functions, C1, C2, D1, D2 are unknown coefficients.

In expressions (4) and (5), the factor exp[i(wt-Oz)] has been left out.

Substituting these formulas with r-a into the boundary conditions for an aniso-

tropic cylinder: -,-E.. E,I-=Ew, E.t e+E,=o,
H,, t9 9 + H,,-H,, tg0 + H, (6)

we get the dispersion equation, which holds good in the case of a small phase

shift between current in neighboring windings of the spiral (tB<sc27) [7]:
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s .. i (Ifa) +  tit K, (JIl a)
2 ~ I ( 1 0 1 a ) K ( 1 0 a )( 7K (11la) + 4h M.. (1Ia)

where: -a M,.)(7)

tric are the relative dielectric permittivities of the ferrite and the dielec-

tric.

At e -, equation (7) is in agreement with the equation derived in (5].1

Calculating the Propagation Constants and the Differential Phase Shift

The calculation of the propagation constant from equation (7) was carried out

according to the methodology described in (4]. Graphs of the Kummer function

were used [8], as well as the relationship between the Whittaker functions and

the Kummer functions:

M,'O(U) 2(+--. I:

'3 3: u

where e is the Kummer function, u-2101a.

With large independent variables, the asymptotic expansion of the Kummer

function was used [8].

The calculation was carried out for a ferrite with c$-7,9,11 and with tensor

components of its permeability -1-1 and -(0.3; 0.5; and 0.8). These
0values

correspond to the residual magnetization of the ferrites used in the superhigh

frequency range.

If the tensor 11P11 is expressed according to formula (1), the component 11 a<O

corresponds to the case when the propagation direction of the wave is in agreement

with the positive value of the z-axis and opposite to the direction of magnetizing

current. With this current direction, the propagation constant is strongly dependent

1The dispersion equation in [5] evidently contains typographical errors, because
according to the sense of the text, the equation should contain modified Bessel
functions.
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on the residual magnetization (Fig. 1). The relationship of the normalized /1

propagation constant S to the normalized radius of the spiral aiaK0ctgo at vari-

ous values of L is shown in this figure.

The introduction of a dielectric on the outside of the spiral leads to an

increase in the propagation constant, both for the negative value of Pa' as well

as for he positive value (Fig. 2). At the same time, the differential phase shift

increases, and the region of the nondispersion characteristic Aa shifts to the

side of the smaller values of a (Fig. 3).

Ilk

!1 /"

4 S 
-T /

is t! i ~Fig. 2. Relationship between the nor-

Fig. 1. Relationship between the nor- malized propagation constant 8 and the
malized propagation constant 8 and the normalized spiral radius a for a ferrite
normalized spiral radius a for a fer- a

with e= 9 , a-1a, and -ru-*0.3 at various

rite wiah at, vros values of e for the dielectric:
values of .- - e -3; e.. -7;

.0a -- e -i0; ------ -E=lS.
-. 3; - - -Ila --0.5; . . 0U-0 70 P

I M V1 &f Af

Fig. 3. Relationship between the region of the nondispersion charac-

teristic ZB for a ferrite with:

e4-9, -1m, and ,,-u *0. 3 at various values of e for

the dielectric:

..... c%~-l; .... e -3; --- ee 7 ; - eAlO; . A -15.
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The region of anamolous dispersion shows up clearly expressed; it can be

used for creating phase shifters with differential phase shifts only weakly de-

pendent on frequency.

The analysis of expression (4) for the magnetic components H. and Hz makes

it possible to explain the increase in 78 with increases in rt dielectric per-

mittivity of the surrounding space. A redistribution of the fie. ds in the struc-

ture under consideration takes place in such a way that in the ferrite, the polari-

zation region close to the radial region is extended for both bias orientations.

An increase in dielectric permittivity of the ferrite in the spiral system,

just as in the case of the waveguide variant in [3], leads to an increase in the

differential phase shift (Fig. 4). However, when there is no waveguide variant,

the character of the variation in the differential phase shift in the frequency

range is maintained.

Fig. 4. Relationship of the normalized propagation constant and the
normalized spiral radius a for ferrites with:

Ia_.J *.3, e.-l at various values of c#:

It is of interest to compare the value of the differential phase shift to a

unit length of the system for spiral and waveguide phase shifters. For a spiral
-9wl and -- *0.3, /

phase shifter with parameters i-1.5 mam, Crg02 Ee9, cd,1i, d . /i

the value of the differential phase shift #-155 degrees/cm. If ed-10, then

A*-195 degrees/cm.
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The valueof Ap derived in the cited work [3] for c=9, o0=, and L=+0.3,
100

and for a ratio of the ferrite radius to the waveguide radius equal to 0.47, is

21.5 degrees/cm, that is, the spiral phase shifter gives a differential phase

shift per unit length several times greater than the waveguide phase shifter.

The small dimensions of a spiral phase shifter require significantly less

power for phase switching.

4 The calculation presented here makes it possible to choose the geometrical

dimensions and electric parameters of a system for designing a small-dimension

phase shifter on a spiral line.
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CALCULATION OF A Y-CIRCULATOR WAVEGUIDE WITH A FERRITE-DIELECTRIC ELEMENT /1

V. I. Vol'man

Results of calculations on and experimental studies of a Y-circulator wave-
guide with a ferrite-dielectric element are analyzed.

Introduction

As was demonstrated in work (1], the functional band of a Y-circulator wave-

guide increases in proportion to a decrease in the dielectric permittivity of the

ferrite from which the ferrite cylinder is made. A similar effect may be expected,

if a dielectric sleeve made of a material with e>l is placed on the ferrite cylin-

der. At the same time, the energy concentration in the ferrite cylinder decreases,

and this is equivalent to a decrease in its dielectric permittivity. In this way,

a Y-circulator with a ferrite-dielectric element is equivalent, according to its

features at the first anproximation, to a Y-circulator without a dielectric sleeve,

but having a decrease in the value of the ferrite dielectric permittivity. This

makes it possible to affirm that the principles of functioning in both variants

of a Y-circulator are identical, and it yields the possibility of using all the

ideas and methods for calculation analyzed in (1] for calculations involving a

Y-circulator with a ferrite-dielectric element.

A standing wave of the first harmonic of an electric field is established at

the central frequency of the working range of a Y-circulator with optimally selec-

ted values for the electrical parameters and the diameter of the ferrite cylinder

on the Y-circulator surface (Fig. 1) [1]. One of the nodes of this kind of wave

is disposed along the longitudinal axis of a side shoulder of the waveguide 2.

At the same time, a type H2 0 wave is excited on shoulder 2; this wave is a higher

type wave for a rectangular waveguide in shoulder 2, and consequently, it cannot

be propagated in it.

By analogy with a Y-circulator without a dielectric sleeve, for determining /I

the optimal dimensions and parameters of the ferrite-dielectric element, it is

necessary to study the electric field structure on the surface of the dielectric
sleeve fitted onto the ferrite cylinder, and it is necessary to explain the
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Fig. 1. Field structure on the surface of a ferrite cylinder.

conditions under which the electric field distribution takes the form shown in

Fig. 1. At the same time, it is assumed that a Y-circulator with a ferrite-

dielectric element will have optimal parameters, if the given field structure

is established.

A very high dielectric permittivity of the ferrite and the presence of a

dielectric sleeve causes a significant energy concentration in the ferrite-

dielectric element and in the space immediately contiguous to it. At the same

time, the distribution of pulse heights and phases of the propagating waves in

the region of the junction of the waveguide shoulders of the circulator depends

basically on the ferrite-dielectric element, and only to a small degree on the

configuration and disposition of the metallic surfaces forming the Y-Joint of the

waveguide. For this reason, for studies on the field structure of a field on the

surface of a dielectric sleeve, it is possible to disregard the effects of the

Y-Joint and to assume that the ferrite-dielectric element is disposed in an un-

bounded, isotropic medium with parameters co and V0.

Deriving the Basic Relationships

Assuming that the structure of the wave incident on the ferrite-dielectric

element does not differ from the wave structure of the principal wave mode type

in an H-plane horn, we may write the voltage vector components of its electrical /1

and magnetic field in the following form [2]:
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Ev ra, H~2 rj COS3

H 2= - H (Y o,) COS3o , 2

i 3I (2) 3

i= i 2'.op . . .

where % _ - r W o is the frequency of the contiguous electromagnetic
1Q

field.

The voltage vector component of the magnetic field of the incident wave tan-

gential to the surface of the ferrite-dielectric element may be expressed thusly:

H = ., n( 0-- ) 1 tA cos ( -n). (. 2)

Using the addition theorem for cylindrical functions, after transforming from

formulas (1) and (2), we get:

E [H2)

,,aI) H (2 Rj. ('.'( )

H .A[ (2) ,.122,'O 'OR4 -II)

t yn 1  4 ~ [1~ (cR 1 - I"I' 3 ',, ( -,R hy r) e''-
11 '= = 4 .o -- I['L ' ' ) H " - '.=- )lJ.,i"t)

[HO,+,,(AoR) + 1(- 1)" H(2) (,OR,)I I__ 1(ior) e=
-- +71-2 , n1--2-

where R1 is the distance between the center of the Y-Joint and the upper horn.

(Fig. 2).

Fig. 2. Y-Joint with a
ferrite-dielectric element.
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The tangential components of the field within the magnetized ferrite cylin-

der along the axis and in the dielectric may be written in the following form:

1. at O~r-ro:

where: /1
1, ' 2 (b a (a

e is the dielectric permittivity of the ferrite, 4 and K are tensor elements of

the ferrite permeability, r0 is the radius of the ferrite cylinder.

2. at roCrCRO:

021p= -f_. J. (A )+ .Y X)r
a--- (5)

H - ... [b. (J r)+ c. Y.' (cir)]eI

where:

,2 '---") I X.=

C A and P' are respectively the dielectric permittivity and the permeability of

the material from which the dielectric sleeve is made; R0 is the dielectric sleeve

radius.

If in accordance with the presumption stated above we disregard the effects

of the metallic surfaces forming the Y-Joint, then the tangential field components

of the field dispersed spatially into the surrounding ferrite-dielectric element /1

are equal to (at r Ro):

d.H91 e""1
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The coefficients entering into formulas (4)-(6) are determined after sub-

stituting these formulas into the following boundary conditions:
E,14= E12) 11u) - H12)  at r - r.: 171

E12) E E HM = HI3, -- H.,,.. at r =R, Q

as well as the solutions to the linear system of equations emerging with this.

As a result, we get:

a, -- Y.H,2) '(_, R)

b.=
D. -( F. 9

(-, nRe Re) + _EY" (XA R H2 (,t R)H12) (.O R.)P.b

where:
.1.)~ 4l(-"e) w _ 1 48)__e_

r 1 J(".A ro) (
YN (2j r$) , 4(it, ?g) ic n Y, (V1A rO)

- ~ [ 4z~ r*) (% Y, 1 rO)

, ~_ ~ HO' (i.6 RG) y Re) - Y (, R).
l H(.2) (. Re)

H?, (0 Re)
H212

The formation of the required structure of the electric field (see Fig. 1)

on the surface of the dielectric sleeve is possible only in the case when, at

r-R0, the pulse heights of the harmonics with indices n-(l) and n-(-l) are: (1) /1

equal to each other, (2) significantly exceed pulse heights of the harmonics with

Inl#l,and (3) are phase shifted with respect to one another by 600. After simple

transformations, it is possible to demonstrate that the first and third conditions

are met, when the following equations are fulfilled:
Y (,Y; (.0 Re) +, 2_ _, _(,$!9 _ _o

[ R). + y2(%$Re).)]
[Y1 NA RG) 1 N Re) ]A R$Y 1 ,(R*) 1 ) (R

rL2 M2 2, . J", e)
1],--{jT--,r

, (as PS16
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S _s 'TS 2+4 M?
= 2(14)

where:

Li= Ji1_re) YJ (%APO) 3%4A rO I (%A PS) '

M =J, (. Ro)- (zA r) VY(ZARe); (16)
Y1 (ILA rO)j3 = (17)

The simultaneous solution of equations (13) and (14) makes it possible to

determine the necessary dimensions for the ferrite cylinder and the dielectric

sleeve, that is, it yields a solution for the problem posed. However, because of

the cumbersomeness of the equations derived, it is difficult to prove analytically

that in this case the pulse height of the harmonics with fn -1 significantly ex-

ceed the pulse heights of all the other harmonics. For this reason, the fulfill-

ment of these equations was checked by a direct numerical calculation, whose re-

sults are examined below.

Results of Numerical Calculation

In comparison with a Y-circulator without a dielectric sleeve, in the circula-

tor variant under consideration here, the parameters are significantly freer, that

is, they have magnitudes which can be conveniently assigned arbitrarily within

physically determined and applicable limits. Seven independent values are con-

tained within the generally complex forms of equations (13) and (14): the dielec-

tric permittivity of the ferrite c; its effective permeability pI; the ratio of

the permeability tensor elements E; the radius of the ferrite cylinder multiplied /1

by the wave number in free space X 0 ,0;; the dielectric permittivity of the sleeve

material c; 'the permeability of the sleeve material UA; and the exterior diameter

of the dielectric sleeve multiplied by the wave number in free space xoR 0.. A

sleeve is usually made from a dielectric (fluoroplastic, polystyrene) with v-i

and e -2.2-2.5; this reduces the number of free parameters to five. For the nor-

mal functioning of a Y-circulator, as emerges from the analysis carried out above,

it is necessary that a system of two equations be satisfied. Consequently, of the

remaining five arbitrary parameters, three may be assigned, and two may be deter-

mined from solutions to equations (13) and (14). As will be shown below, the selec-

tion of parameters is somewhat restricted by the demand that the discrimination
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between the shoulders of the Y-circulator be not less than 20 dB.

The calculation was carried out in the following order. The values for e,

1, £g, u., and %0r04 were assigned, and from equations (13) and (14), the values
for xoRo and were determined. The values of K and u may be found from the

equation u Il-(!-2]. In all calculations whose results are represented in the

form of graphs in Figs. 3-4, it was taken that c,-2.4 and u =l.

(a) : (b)

6"r. Z' It,

70Y W 44 41 V /4. 4S 4C 4TO #,

Fig. 3. Relationship between the optimal magnitude of the exterior
radius of the dielectric sleeve and the ferrite cylinder radius.

(a)

. , ,.,.,,' ' ' ' I..,,.

Fig. 4. Relationship between optimnal values for the tensor parameters
of the ferrite and the radius of the f ezrite cylinder.
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It is interesting to note that at some values of e and ul, the application

of a thin dielectric sleeve leads to a decrease in the ratio that is, it

makes it possible to reduce somewhat the voltage of the exterior magnetic field.

With an increase in the sleeve diameter, the ratio 5 -'ins to increase rapidly.

This means that Y-circulators with thick dielectric sleeves function with large

magnetizing fields, which is confirmed by experimental data. If for a Y-circulator

without a dielectric sleeve, fields with intensities on the order of 50 to 200
oersteds are normal, then in broadband Y-circulators with a dielectric sleeve,

the magnetizing field intensity increases to 800 to 1,000 oersteds.

We shall examine the influence of harmonics with an index n~l on the param-

eters of a Y-circulator. A uniform field distribution on the surface and around

a ferrite cylinder corresponds to the zero harmonic (n-0) of the electric field.

For this reason, under the influence of the field of this harmonic, all shoulders

of the circulator are uniformly excited, that is, even at the central frequency

of the Y-circulator's working range, a portion of the power enters the insulating
shoulder, and the discrimination between the side shoulders of the circulator has

a finite value. Thus, it turns out from the calculation that depending on the

decrease in the dielectric sleeve diameter, the value of the maximum possible

achievable discrimination decreases.

An analysis of the expressions for the pulse heights of harmonics with indices

n 2 and the results of the numerical calculations show that with real values for

the parameters of the ferrite and parameters of the dielectric sleeve, the great-

est amplitude (pulse height) of all the harmonics at InIZ2 is possessed by the /1

second harmonic (on the order of 0.1-0.25). However, the distribution of the

second harmonic of the electric field on the dielectric sleeve surface is such

that it has practically no influence on the division of the power between the

circulator side shoulders (see Fig. 3 and [1]).

Frequency Range Characteristics

The working frequency range for a Y-circulator is restricted by the minimal

necessary value of discrimination between the circulator side shoulders (normally

20 dB) and by the maximum achievable reflection factor from its input (normally

not greater than 0.05 to 0.12). As is well known [3], these parameters are
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interlinked, and this makes it possible in an investigation of frequency range

characteristics of a circulator to examine the relationships between the frequency

and only the magnitude of discrimination.

If the frequency of electromagnetic oscillations entering as input into a

Y-circulator is different from the resonant frequency of the circulator, then, as

it follows from calculation, the amplitudes of the harmonics with indices n-I and

n--i cease to be equal. In addition, the optimal phase relationships between these

harmonics [1] are disrupted. As a result, the formation of the pure standing wave

of the first harmonic of the electric field on the surface of the ferrite cylinder,

as shown in Fig. 1, becomes impossible. This leads to the excitation of a type

H1 0 wave mode in the insolating shoulder of the circulator, and as a result, also

to a decrease in the discrimination between the circulator side members.

In Fig. 5, the relationship between the relative width of the working fre-

quency range of a Y-circulator and the diameter of a dielectric sleeve fitted onto

the ferrite circulator is shown at various values of the ferrite parameters. The

working frequency range of a Y-circulator is determined as a difference in fre-

quencies, between which limits the discrimination between the side shoulders of

the circulator is not less than 20 dD. The order of this computation does not

:,at (a)
values2 of(Jb)

magnitud ofdicrimiatio .owve, wtsufcelyhick ieecri/seeestar . s r n freuncy ef srinao between the.sideishouders ile

values of V1.

differ from that analyzed in the article in work [1]. With the calculation, it is

presumed that the zero harmonic of the electric field has no influence on the /

magnitude of discrimination. However, with sufficiently thick dielectric sleeves,

the pulse height of the zero harmonic becomes so great that even at the Y-circula-

i tot's resonant frequency, the discrimination between the side shoulders is less

than 20 dA. This imposes a restriction on the selection of the maximum dielectric
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sleeve diameter and disallows the possibility of realizing a working frequency

range greater than 8 to 10%. In Fig. 6, the relationship between the maximum

achievable frequency range of a Y-circulator and the electric parameters of a

ferrite with a discrimination not exceeding 20 db is presented. As may be seen

'i.f

U S 4? V V.M

Fig. 6. Maximum achievable working frequency range for a Y-
circulator with a dielectric sleeve.

from the graphs presented here, the use of a dielectric sleeve yields the pos-

sibility of extending the working frequency range of Y-circulators in comparison

with Y-circulators without dielectric sleeves by several times.

Results of Experimental Study

As for the case of a Y-circulator without a dielectric sleeve as well [1],

for confirming the correctness of the presumptions at the base of the calculations

for a Y-circulator waveguide with a ferrite-dielectric element, the distribution

of the module of electric field intensity on the surface of a dielectric sleeve

in a tuned Y-circulator was experimentally measured. The measurements were car-

ried out with the help of a rotating sonde [1]. In order to avoid substantial er-

ror during this, the ferrite-dielectric element was attached to a rotating plug

with the sonde.

The results of the experiment, presented in Fig. 7, confirm the presupposition

concerning the fact that the principle of functioning of a Y-circulator with a

ferrite-dielectric element and the physical processes taking place in it are iden-

tical to the same in a Y-circulator without a dielectric sleeve.

Insofar as there are no data in the literature concerning parameters of Y-

circulators with ferrite-dielectric elements, in order to check the calculation
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results, the parameters of a Y-circulator waveguide with various ferrite-dielec- /1

tric elements were measured. Ferrite cylinders were prepared from grade M-18

ferrite with e-8.1 The results of the experimental study and corresponding cal-
p

culational data are presented in the following table.

H 9 _ _ _ _; 1 1 _ _

8 0,1 0,24 0.23 0,97 072 9
88 0,91072 1

,7 0.38 1,03 1 r(2

4 i 25 0,83 .,95 0.6! -
•0,45 0,45 1.0 1 .2'

0,45 0,42 f92 to di
172 0,73 deno-2a o - i. 2 _.-

236 0.1047 0.43 1.'9 ,.r -"26

0,44 0.4 0,91 .2

400 0, 36 o.7_ od , __) 6 l
0.66 o.52 0,79 1,4)

Note. In the denominators of the fractions, values derived

by means of a calculational method are shown.

iapu

Fig. 7. The experimentally derived structure of an electric
field on the surface of a dielectric sleeve.

Values for ul and :Yof%. found experimentally were taken as baseline data for /1

the calculation. All values entered into the table were derived at the central

frequency of the working circulator frequency range.
2

lIn the work cited [4], an experimentally plotted curve of magnetization for this

kind of ferrite is presented. This makes it possible according to a known ex-

ternal magnetic field intensity to determine the tensor parameters of the ferrite,
taking into account the demagnetizing factors, and to compare them with the val-
ues generated from calculation.
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As may be seen from the table, the agreement of calculational and experi-

mental data is quite satisfactory.

I

i1-i

2The umeasurements were carried out in the three-centimetric range.
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